scholarly journals An Improved Blockchain-Based Secure Data Deduplication using Attribute-Based Role Key Generation with Efficient Cryptographic Methods

Author(s):  
Ruba S ◽  
A.M. Kalpana

Abstract Deduplication can be used as a data redundancy removal method that has been constructed to save system storage resources through redundant data reduction in cloud storage. Now a day, deduplication techniques are increasingly exploited to cloud data centers with the growth of cloud computing techniques. Therefore, many deduplication methods were presented by many researchers to eliminate redundant data in cloud storage. For secure deduplication, previous works typically have introduced third-party auditors for the data integrity verification, but it may be suffered from data leak by the third-party auditors. And also the customary methods could not face more difficulties in big data deduplication to correctly consider the two conflicting aims of high duplicate elimination ratio and deduplication throughput. In this paper, an improved blockchain-based secure data deduplication is presented with efficient cryptographic methods to save cloud storage securely. In the proposed method, an attribute-based role key generation (ARKG) method is constructed in a hierarchical tree manner to generate a role key when the data owners upload their data to cloud service provider (CSP) and to allow authorized users to download the data. In our system, the smart contract (agreement between the data owner and CSP) is done using SHA-256 (Secure Hash Algorithm-256) to generate a tamper-proofing ledger for data integrity, in which data is protected from illegal modifications, and duplication detection is executed through hash-tag that can be formed by SHA-256. Message Locked encryption (MLE) is employed to encrypt data for data uploading by the data owners to the CSP. The experimental results show that our proposed secure deduplication scheme can give higher throughput and a low duplicate elimination ratio.

2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Qian Meng ◽  
Jianfeng Ma ◽  
Kefei Chen ◽  
Yinbin Miao ◽  
Tengfei Yang

User authentication has been widely deployed to prevent unauthorized access in the new era of Internet of Everything (IOE). When user passes the legal authentication, he/she can do series of operations in database. We mainly concern issues of data security and comparable queries over ciphertexts in IOE. In traditional database, a Short Comparable Encryption (SCE) scheme has been widely used by authorized users to conduct comparable queries over ciphertexts, but existing SCE schemes still incur high storage and computational overhead as well as economic burden. In this paper, we first propose a basic Short Comparable Encryption scheme based on sliding window method (SCESW), which can significantly reduce computational and storage burden as well as enhance work efficiency. Unfortunately, as the cloud service provider is a semitrusted third party, public auditing mechanism needs to be furnished to protect data integrity. To further protect data integrity and reduce management overhead, we present an enhanced SCESW scheme based on position-aware Merkle tree, namely, PT-SCESW. Security analysis proves that PT-SCESW and SCESW schemes can guarantee completeness and weak indistinguishability in standard model. Performance evaluation indicates that PT-SCESW scheme is efficient and feasible in practical applications, especially for smarter and smaller computing devices in IOE.


The widespread adoption of multi-cloud in enterprises is one of the root causes of cost-effectiveness. Cloud service providers reduce storage costs through advanced data de-duplication, which also provides vulnerabilities for attackers. Traditional approaches to authentication and data security for a single cloud need to be upgraded to be best suitable for cloud-to-cloud data migration security in order to mitigate the impact of dictionary and template attacks on authentication and data integrity, respectively. This paper proposes a scheme of user layer authentication along with lightweight cryptography. The proposed simulates its mathematical model to analyze the behavioral pattern of time-complexity of data security along with user auth protection. The performance pattern validates the model for scalability and reliability against both authentication and data integrity.


Author(s):  
Pallapu Himavanth Reddy

Abstract: Cloud computing provides customers with storage as a service, allowing data to be stored, managed, and cached remotely. Users can also access it online. A major concern for users is the integrity of the data stored in the cloud, as it is possible for external invaders or criminals to attack, repair, or destroy the data stored in the cloud. Data auditing is a trending concept that involves hiring a third-party auditor to perform a data integrity test (TPA). The main purpose of this project is to provide a safe and effective testing system that combines features such as data integrity, confidentiality, and privacy protection. The cloud server is only used to store encrypted data blocks in the proposed system. It is not subject to any additional computer verification. TPA and the data owner are in charge of all the functions of the scheme. A variety of materials are used to evaluate the proposed audit process. The proposed solution meets all the processes while minimizing the load on cloud servers. Data dynamics actions such as data review, deletion, and installation will be performed in the future. Keywords: Cloud storage; Third Party Auditor; Public Auditing; Privacy Preserving; Integrity;


2021 ◽  
Vol 23 (09) ◽  
pp. 1-13
Author(s):  
Jibin Joy ◽  
◽  
Dr. S. Devaraju ◽  

Data deduplication is a crucial technique for packing data and reducing duplication when transferring data. It is widely used in the cloud to restrict the usage of capacity memory and aids in transmission capacity sparing. Before redistributing data, an encryption mechanism is used to ensure the integrity of sensitive data during the deduplication process. The SHA algorithm is being used to save data in text format. To generate the security bits, padding is appended to the text. In de-duplication, it calculates the hash, i.e. hexadecimal number, string, and integer data. Hash-based de-duplication is the implementation of whole file hashing to the entire file. Text data’s hash values are considered to as feature properties. In contrast to traditional deduplication solutions, clients that transfer data to the cloud certify duplication inside the cloud data. In virtualization, both limiting primary memory size and memory blockage are considered important bottlenecks. Memory deduplication identifies pages with the same content and merges them into a single data file, reducing memory usage, memory parceling, and improving execution. In cloud storage, the MPT is used to deduplication so that it is used in single copies of the same data for different data owners. If any data users try to replicate the same data, it will be mapped and related to the archive data, implying that the data can’t be stored away. To ensure cloud data security, encryption techniques are used to encrypt data throughout deduplication procedures and prior to outsourcing cloud data.


2014 ◽  
Vol 13 (7) ◽  
pp. 4625-4632
Author(s):  
Jyh-Shyan Lin ◽  
Kuo-Hsiung Liao ◽  
Chao-Hsing Hsu

Cloud computing and cloud data storage have become important applications on the Internet. An important trend in cloud computing and cloud data storage is group collaboration since it is a great inducement for an entity to use a cloud service, especially for an international enterprise. In this paper we propose a cloud data storage scheme with some protocols to support group collaboration. A group of users can operate on a set of data collaboratively with dynamic data update supported. Every member of the group can access, update and verify the data independently. The verification can also be authorized to a third-party auditor for convenience.


2021 ◽  
Author(s):  
Fatema Rashid

With the tremendous growth of available digital data, the use of Cloud Service Providers (CSPs) are gaining more popularity, since these types of services promise to provide convenient and efficient storage services to end-users by taking advantage of a new set of benefits and savings offered by cloud technologies in terms of computational, storage, bandwidth, and transmission costs. In order to achieve savings in storage, CSPs often employ data dedplication techniques to eliminate duplicated data. However, benefits gained through these techniques have to balanced against users' privacy concerns, as these techniques typically require full access to data. In this thesis, we propose solutions for different data types (text, image and video) for secure data deduplication in cloud environments. Our schemes allow users to upload their data in a secure and efficient manner such that neither a semi-honest CSP nor a malicious user can access or compromise the security of the data. We use different image and video processing techniques, such as data compression, in order to further improve the efficiency of our proposed schemes. The security of the deduplication schemes is provided by applying suitable encryption schemes and error correcting codes. Moreover, we propose proof of storage protocols including Proof of Retrievability (POR) and Proof of Ownership (POW) so that users of cloud storage services are able to ensure that their data has been saved in the cloud without tampering or manipulation. Experimental results are provided to validate the effectiveness of the proposed schemes.


2021 ◽  
Author(s):  
Fatema Rashid

With the tremendous growth of available digital data, the use of Cloud Service Providers (CSPs) are gaining more popularity, since these types of services promise to provide convenient and efficient storage services to end-users by taking advantage of a new set of benefits and savings offered by cloud technologies in terms of computational, storage, bandwidth, and transmission costs. In order to achieve savings in storage, CSPs often employ data dedplication techniques to eliminate duplicated data. However, benefits gained through these techniques have to balanced against users' privacy concerns, as these techniques typically require full access to data. In this thesis, we propose solutions for different data types (text, image and video) for secure data deduplication in cloud environments. Our schemes allow users to upload their data in a secure and efficient manner such that neither a semi-honest CSP nor a malicious user can access or compromise the security of the data. We use different image and video processing techniques, such as data compression, in order to further improve the efficiency of our proposed schemes. The security of the deduplication schemes is provided by applying suitable encryption schemes and error correcting codes. Moreover, we propose proof of storage protocols including Proof of Retrievability (POR) and Proof of Ownership (POW) so that users of cloud storage services are able to ensure that their data has been saved in the cloud without tampering or manipulation. Experimental results are provided to validate the effectiveness of the proposed schemes.


Cloud Computing is well known today on account of enormous measure of data storage and quick access of information over the system. It gives an individual client boundless extra space, accessibility and openness of information whenever at anyplace. Cloud service provider can boost information storage by incorporating data deduplication into cloud storage, despite the fact that information deduplication removes excess information and reproduced information happens in cloud environment. This paper presents a literature survey alongside different deduplication procedures that have been based on cloud information storage. To all the more likely guarantee secure deduplication in cloud, this paper examines file level data deduplication and block level data deduplication.


Author(s):  
Anil Kumar G. ◽  
Shantala C. P.

Owing to the highly distributed nature of the cloud storage system, it is one of the challenging tasks to incorporate a higher degree of security towards the vulnerable data. Apart from various security concerns, data privacy is still one of the unsolved problems in this regards. The prime reason is that existing approaches of data privacy doesn't offer data integrity and secure data deduplication process at the same time, which is highly essential to ensure a higher degree of resistance against all form of dynamic threats over cloud and internet systems. Therefore, data integrity, as well as data deduplication is such associated phenomena which influence data privacy. Therefore, this manuscript discusses the explicit research contribution toward data integrity, data privacy, and data deduplication. The manuscript also contributes towards highlighting the potential open research issues followed by a discussion of the possible future direction of work towards addressing the existing problems.


Sign in / Sign up

Export Citation Format

Share Document