scholarly journals Change In The Variability In The Western Pacific Pattern During Boreal Winter: Roles of Tropical Pacific Sea Surface Temperature Anomalies And North Pacific Storm Track Activity

Author(s):  
Hasi Aru ◽  
Shangfeng Chen ◽  
Wen Chen

Abstract Using multiple reanalysis datasets, this study reveals that the variability in the Western Pacific pattern (WP) in boreal winter has shown notable changes during recent decades. The variability in the winter WP exhibited a marked weakening trend before the early 2000s and increased slightly thereafter. Two epochs with the highest and lowest WP variabilities are selected for a comparative analysis. Winter WP-related meridional dipole atmospheric anomalies over the North Pacific were stronger and had a broader range during the high-variability epoch than during the low-variability epoch. Correspondingly, the winter WP had larger impacts on surface temperature variations over Eurasia and North America during the high-variability epoch than during the low-variability epoch. We find that the shift in the winter WP variability is closely related to changes in the connection between the winter WP and the El Niño-Southern Oscillation (ENSO) and to changes in the amplitude of the North Pacific storm track. Specifically, ENSO had a closer connection with the WP during the high-variability epoch, at which time the amplitude of the North Pacific storm track was also stronger. During the high-variability epoch, the extratropical atmospheric anomalies generated by the tropical ENSO shifted westward and projected more on the WP-related atmospheric anomalies, thus contributing to an increase in WP variability. In addition, the larger amplitude of the North Pacific storm track that occurred during the high-variability epoch led to the stronger feedback of synoptic-scale eddies to the mean flow and contributed to stronger WP variability. Further analysis indicates that the change in the connection of ENSO with the WP may be partly related to the zonal shift of the sea surface temperature anomaly in the tropical Pacific associated with ENSO.

2011 ◽  
Vol 24 (4) ◽  
pp. 1122-1137 ◽  
Author(s):  
Yi Deng ◽  
Tianyu Jiang

Abstract The modulation of the North Pacific storm track by tropical convection on intraseasonal time scales (30–90 days) in boreal winter (December–March) is investigated using the NCEP–NCAR reanalysis and NOAA satellite outgoing longwave radiation (OLR) data. Multivariate empirical orthogonal function (MEOF) analysis and case compositing based upon the principal components (PCs) of the EOFs reveal substantial changes in the structure and intensity of the Pacific storm track quantified by vertically (925–200 mb) averaged synoptic eddy kinetic energy (SEKE) during the course of a typical Madden–Julian oscillation (MJO) event. The storm-track response is characterized by an amplitude-varying dipole propagating northeastward as the center of the anomalous tropical convection moves eastward across the eastern Indian Ocean and the western-central Pacific. A diagnosis of the SEKE budget indicates that the storm-track anomaly is induced primarily by changes in the convergence of energy flux, baroclinic conversion, and energy generation due to the interaction between synoptic eddies and intraseasonal flow anomalies. This demonstrates the important roles played by eddy–mean flow interaction and eddy–eddy interaction in the development of the extratropical response to MJO variability. The feedback of synoptic eddy to intraseasonal flow anomalies is pronounced: when the center of the enhanced tropical convection is located over the Maritime Continent (western Pacific), the anomalous synoptic eddy forcing partly drives an upper-tropospheric anticyclonic (cyclonic) and, to its south, a cyclonic (anticyclonic) circulation anomaly over the North Pacific. Associated with the storm-track anomaly, a three-band (dry–wet–dry) anomaly in both precipitable water and surface precipitation propagates poleward over the eastern North Pacific and induces intraseasonal variations in the winter hydroclimate over western North America.


2013 ◽  
Vol 26 (16) ◽  
pp. 6123-6136 ◽  
Author(s):  
Bolan Gan ◽  
Lixin Wu

Abstract In this study, a lagged maximum covariance analysis (MCA) of the wintertime storm-track and sea surface temperature (SST) anomalies derived from the reanalysis datasets shows significant seasonal and long-term relationships between storm tracks and SST variations in the North Pacific. At seasonal time scales, it is found that the midlatitude warm (cold) SST anomalies in the preceding fall, which are expected to change the tropospheric baroclinicity, can significantly reduce (enhance) the storm-track activities in early winter. The storm-track response pattern, however, is in sharp contrast to the forcing pattern, with warm (cold) SST anomalies in the western–central North Pacific corresponding to a poleward (equatorward) shift of storm tracks. At interannual-to-decadal time scales, it is found that the wintertime SST and storm-track anomalies are mutually reinforced up to 3 yr, which is characterized by PDO-like SST anomalies with warming in the western–central domain coupled with basin-scale positive storm-track anomalies extending along 50°N.


2019 ◽  
Vol 32 (19) ◽  
pp. 6271-6284 ◽  
Author(s):  
Xiaofan Li ◽  
Zeng-Zhen Hu ◽  
Ping Liang ◽  
Jieshun Zhu

Abstract In this work, the roles of El Niño–Southern Oscillation (ENSO) in the variability and predictability of the Pacific–North American (PNA) pattern and precipitation in North America in winter are examined. It is noted that statistically about 29% of the variance of PNA is linearly linked to ENSO, while the remaining 71% of the variance of PNA might be explained by other processes, including atmospheric internal dynamics and sea surface temperature variations in the North Pacific. The ENSO impact is mainly meridional from the tropics to the mid–high latitudes, while a major fraction of the non-ENSO variability associated with PNA is confined in the zonal direction from the North Pacific to the North American continent. Such interferential connection on PNA as well as on North American climate variability may reflect a competition between local internal dynamical processes (unpredictable fraction) and remote forcing (predictable fraction). Model responses to observed sea surface temperature and model forecasts confirm that the remote forcing is mainly associated with ENSO and it is the major source of predictability of PNA and winter precipitation in North America.


2020 ◽  
Author(s):  
Yuan-Bing Zhao

<p>Using a recently developed methodology, namely, the multiscale window transform (MWT), and the MWT-based theory of canonical transfer and localized multiscale energetics analysis, we investigate in an eddy-following way the nonlinear eddy-background flow interaction in the North Pacific storm track, based on the ERA40 reanalysis data from ECWMF. It is found that more than 50% of the storms occur on the northern flank of the jet stream, about 40% are around the jet center, and very few (less than 5%) happen on the southern flank. For storms near or to the north of the jet center, their interaction with the background flow is asymmetric in latitude. In higher latitudes, strong downscale canonical available potential energy transfer happens, especially in the middle troposphere, which reduces the background baroclinicity and decelerates the jet; in lower latitudes, upscale canonical kinetic energy transfer intensifies at the jet center, accelerating the jet and enhancing the middle-level baroclinicity. The resultant effect is that the jet strengthens but narrows, leading to an anomalous dipolar pattern in the fields of background wind and baroclinicity. For the storms on the southern side of the jet, the baroclinic canonical transfer is rather weak. On average, the local interaction begins from about 3 days before a storm arrives at the site of observation, achieves its maximum as the storm arrives, and then weakens.</p>


Sign in / Sign up

Export Citation Format

Share Document