scholarly journals Therapeutic potential of human induced pluripotent stem cells and renal progenitor cells in experimental chronic kidney disease

2020 ◽  
Author(s):  
Patrícia de Carvalho Ribeiro ◽  
Fernando Henrique Lojudice ◽  
Ida Maria Maximina Fernandes-Charpiot ◽  
Maria Alice Sperto Ferreira Baptista ◽  
Stanley de Almeida Araújo ◽  
...  

Abstract Background: Chronic Kidney Disease (CKD) is a global public health problem. Cell therapy using pluripotent stem cells represents an attractive therapeutic approach for the treatment of CKD.Methods: We transplanted Mitomycin C (MMC)-treated human induced pluripotent stem cells (hiPSCs) and renal progenitor cells (RPCs) into a CKD rat model system. The RPCs and hiPSCs cells were characterized by immunofluorescence and qRT-PCR. Untreated 5/6 nephrectomized rats were compared to CKD animals receiving the same amount of MMC-treated hiPSCs or RPCs. Renal function, histology and immunohistochemistry were evaluated 45 days post-surgery.Results: We successfully generated hiPSCs from peripheral blood and differentiated them into RPCs expressing renal progenitor genes (PAX2, WT1, SIX2, and SALL1) and podocyte-related genes (SYNPO, NPHS1). RPCs also exhibited reduced OCT4 expression, confirming the loss of pluripotency. After cell transplantation into CKD rats, the body weight change was significantly increased in both hiPSC and RPC groups, in comparison with the control group. Creatinine clearance (CCr) was preserved only in the hiPSC group. Similarly, the number of macrophages in the kidneys of the hiPSC group reached a statistically significant reduction, when compared to control rats. Both treatments reduced positive staining for the marker α-smooth muscle actin. Histological features showed decreased tubulointerstitial damage (interstitial fibrosis and tubular atrophy) as well as a reduction in glomerulosclerosis in both iPSC and RPC groups.Conclusions: In conclusion, we describe that both MMC-treated hiPSCs and RPCs exert beneficial effects in attenuating CKD progression. Both cell types were equally efficient to reduce histological damage and weight loss caused by CKD. hiPSCs seems to be more efficient than RPCs, possibly due to a paracrine effect triggered by hiPSCs. These results demonstrate that the use of MMC-treated hiPSCs and RPCs improve clinical and histological CKD parameters, avoided tumor formation, and therefore may be a promising cell therapy strategy for CKD.

2020 ◽  
Author(s):  
Patrícia de Carvalho Ribeiro ◽  
Fernando Henrique Lojudice ◽  
Ida Maria Maximina Fernandes-Charpiot ◽  
Maria Alice Sperto Ferreira Baptista ◽  
Stanley de Almeida Araújo ◽  
...  

Abstract BackgroundChronic Kidney Disease (CKD) is a global public health problem. Cell therapy using pluripotent stem cells represents an attractive therapeutic approach for the treatment of CKD.MethodsWe transplanted Mitomycin C (MMC)-treated human induced pluripotent stem cells (hiPSCs) and renal progenitor cells (RPCs) into a CKD rat model system. The RPCs and hiPSCs cells were characterized by immunofluorescence and qRT-PCR. Untreated 5/6 nephrectomized rats were compared to CKD animals receiving the same amount of MMC-treated hiPSCs or RPCs. Renal function, histology and immunohistochemistry were evaluated 45 days post-surgery. ResultsWe successfully generated hiPSCs from peripheral blood and differentiated them into RPCs expressing renal progenitor genes (PAX2, WT1, SIX2, and SALL1) and podocyte-related genes (SYNPO, NPHS1). RPCs also exhibited reduced OCT4 expression, confirming the loss of pluripotency. After cell transplantation into CKD rats, the body weight change was significantly increased in both hiPSC and RPC groups, in comparison with the control group. Creatinine clearance (CCr) was preserved only in the hiPSC group. Similarly, the number of macrophages in the kidneys of the hiPSC group reached a statistically significant reduction, when compared to control rats. Both treatments reduced positive staining for the marker α-smooth muscle actin. Histological features showed decreased tubulointerstitial damage (interstitial fibrosis and tubular atrophy) as well as a reduction in glomerulosclerosis in both iPSC and RPC groups.ConclusionsIn conclusion, we describe that both MMC-treated hiPSCs and RPCs exert beneficial effects in attenuating CKD progression. Both cell types were equally efficient to reduce histological damage and weight loss caused by CKD. hiPSCs seems to be more efficient than RPCs, possibly due to a paracrine effect triggered by hiPSCs. These results demonstrate that the use of MMC-treated hiPSCs and RPCs improve clinical and histological CKD parameters, avoided tumor formation, and therefore may be a promising cell therapy strategy for CKD.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Patrícia de Carvalho Ribeiro ◽  
Fernando Henrique Lojudice ◽  
Ida Maria Maximina Fernandes-Charpiot ◽  
Maria Alice Sperto Ferreira Baptista ◽  
Stanley de Almeida Araújo ◽  
...  

Abstract Background Chronic kidney disease (CKD) is a global public health problem. Cell therapy using pluripotent stem cells represents an attractive therapeutic approach for the treatment of CKD. Methods We transplanted mitomycin C (MMC)-treated human induced pluripotent stem cells (hiPSCs) and renal progenitor cells (RPCs) into a CKD rat model system. The RPC and hiPSC cells were characterized by immunofluorescence and qRT-PCR. Untreated 5/6 nephrectomized rats were compared to CKD animals receiving the same amount of MMC-treated hiPSCs or RPCs. Renal function, histology, and immunohistochemistry were evaluated 45 days post-surgery. Results We successfully generated hiPSCs from peripheral blood and differentiated them into RPCs expressing renal progenitor genes (PAX2, WT1, SIX2, and SALL1) and podocyte-related genes (SYNPO, NPHS1). RPCs also exhibited reduced OCT4 expression, confirming the loss of pluripotency. After cell transplantation into CKD rats, the body weight change was significantly increased in both hiPSC and RPC groups, in comparison with the control group. Creatinine clearance (CCr) was preserved only in the hiPSC group. Similarly, the number of macrophages in the kidneys of the hiPSC group reached a statistically significant reduction, when compared to control rats. Both treatments reduced positive staining for the marker α-smooth muscle actin. Histological features showed decreased tubulointerstitial damage (interstitial fibrosis and tubular atrophy) as well as a reduction in glomerulosclerosis in both iPSC and RPC groups. Conclusions In conclusion, we describe that both MMC-treated hiPSCs and RPCs exert beneficial effects in attenuating CKD progression. Both cell types were equally efficient to reduce histological damage and weight loss caused by CKD. hiPSCs seem to be more efficient than RPCs, possibly due to a paracrine effect triggered by hiPSCs. These results demonstrate that the use of MMC-treated hiPSCs and RPCs improves clinical and histological CKD parameters, avoided tumor formation, and therefore may be a promising cell therapy strategy for CKD. Graphical abstract


2020 ◽  
Author(s):  
Patrícia de Carvalho Ribeiro ◽  
Fernando Henrique Lojudice ◽  
Ida Maria Maximina Fernandes-Charpiot ◽  
Maria Alice Sperto Ferreira Baptista ◽  
Stanley de Almeida Araújo ◽  
...  

Abstract BackgroundChronic Kidney Disease (CKD) is a global public health problem. Regenerative medicine using pluripotent stem cells represents an attractive therapeutic approach for the treatment of CKD.MethodsWe transplanted Mitomycin C (MMC)-treated human induced pluripotent stem cells (hiPSCs) and renal progenitors cells (RPCs) into a CKD rat model system. The RPCs and hiPSCs cells were characterized by immunofluorescence and qRT-PCR. Untreated 5/6 nephrectomized rats were compared to CKD animals receiving the same amount of MMC-treated hiPSCs or RPCs. Renal function, histology and immunohistochemistry were evaluated 45 days post-surgery. ResultsWe successfully generated hiPSCs from peripheral blood and differentiated them into RPCs expressing renal progenitor genes (PAX2, WT1, SIX2, and SALL1) and podocyte-related genes (SYNPO, NPHS1). RPCs also exhibited reduced OCT4 expression, confirming the loss of pluripotency. After cell transplantation into CKD rats, the body weight change was significantly increased in both hiPSC and RPC groups, in comparison with the control group. Creatinine clearance (CCr) was preserved only in the hiPSC group. Similarly, the number of macrophages in the kidneys of the hiPSC group reached a statistically significant reduction, when compared to control rats. Both treatments reduced positive staining for the marker α-smooth muscle actin. Histological features showed decreased tubulointerstitial damage (interstitial fibrosis and tubular atrophy) as well as a reduction in glomerulosclerosis in both iPSC and RPC groups.ConclusionsIn conclusion, we describe that both MMC-treated hiPSCs and RPCs exert beneficial effects in attenuating CKD progression. Both cell types were equally efficient to reduce histological damage and weight loss caused by CKD. hiPSCs seems to be more efficient than RPCs, possibly due to an anti-inflammatory mechanism triggered by hiPSCs. These results demonstrate that the use of MMC-treated hiPSCs and RPCs improve clinical and histological CKD parameters, avoided tumor formation, and therefore may be a promising cell therapy strategy for CKD.


2013 ◽  
Vol 125 (7) ◽  
pp. 319-327 ◽  
Author(s):  
Wei Eric Wang ◽  
Xiongwen Chen ◽  
Steven R. Houser ◽  
Chunyu Zeng

Stem cell therapy has emerged as a promising strategy for cardiac and vascular repair. The ultimate goal is to rebuild functional myocardium by transplanting exogenous stem cells or by activating native stem cells to induce endogenous repair. CS/PCs (cardiac stem/progenitor cells) are one type of adult stem cell with the potential to differentiate into cardiac lineages (cardiomyocytes, smooth muscle cells and endothelial cells). iPSCs (induced pluripotent stem cells) also have the capacity to differentiate into necessary cells to rebuild injured cardiac tissue. Both types of stem cells have brought promise for cardiac repair. The present review summarizes recent advances in cardiac cell therapy based on these two cell sources and discusses the advantages and limitations of each candidate. We conclude that, although both types of stem cells can be considered for autologous transplantation with promising outcomes in animal models, CS/PCs have advanced more in their clinical application because iPSCs and their derivatives possess inherent obstacles for clinical use. Further studies are needed to move cell therapy forward for the treatment of heart disease.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Heloisa Cristina Caldas ◽  
Fernando Henrique Lojudice ◽  
Cinthia Dias ◽  
Ida Maria Maximina Fernandes-Charpiot ◽  
Maria Alice Sperto Ferreira Baptista ◽  
...  

The therapeutic effect of induced pluripotent stem cells (iPSs) on the progression of chronic kidney disease (CKD) has not yet been demonstrated. In this study, we sought to assess whether treatment with iPSs retards progression of CKD when compared with bone marrow mesenchymal stem cells (BMSCs). Untreated 5/6 nephrectomized rats were compared with CKD animals receiving BMSCs or iPSs. Renal function, histology, immunohistochemistry, and gene expression were studied. Implanted iPSs were tracked by the SRY gene expression analysis. Both treatments minimized elevation in serum creatinine, significantly improved clearance, and slowed down progression of disease. The proteinuria was reduced only in the iPS group. Both treatments reduced glomerulosclerosis, iPSs decreased macrophage infiltration, and TGF-β was reduced in kidneys from the BMSC group. Both types of treatments increased VEGF gene expression, TGF-β was upregulated only in the iPS group, and IL-10 had low expression in both groups. The SRY gene was found in 5/8 rats treated with iPSs. These 5 animals presented tumors with histology and cells highly staining positive for PCNA and Wilms’ tumor protein antibody characteristics of Wilms’ tumor. These results suggest that iPSs may be efficient to retard progression of CKD but carry the risk of Wilms’ tumor development.


Sign in / Sign up

Export Citation Format

Share Document