scholarly journals An 8-lncRNA Signature Predicts Survival of Triple-Negative Breast Cancer Patients Without Germline BRCA1/2 Mutation

2020 ◽  
Author(s):  
Minling Liu ◽  
Wei Dai ◽  
Mengyuan Zhu ◽  
Xueying Li ◽  
Shan Huang ◽  
...  

Abstract Background: Triple-negative breast cancer (TNBC) is a particular breast cancer subtype with poor prognosis due to its aggressive biological behavior and strong heterogeneity. TNBC with germline BRCA1/2 mutation (gBRCAm) have higher sensitivity to DNA damaging agents including platinum-based chemotherapy and PARP inhibitors. But the treatment of TNBC without gBRCAm remains challenging. This study aimed to develop a long non-coding RNA (lncRNA) signature of TNBC patients without gBRCAm to improve risk stratification and optimize individualized treatment.Methods: 98 TNBC patients without gBRCAm were acquired from The Cancer Genome Atlas (TCGA) database. The univariable Cox regression analysis and LASSO Cox regression model were applied to establish an lncRNA signature in the training cohort (N = 59). Then Kaplan–Meier survival curve and time-dependent ROC curve were used to validate the prognostic ability of the signature. The signature related mRNAs were identified using the Pearson correlation. Functional enrichment analysis of related mRNA was performed using the Metascape. The qPCR assay was performed to confirm the expressions and clinicopathological correlationsof two potential lncRNAs HAGLROS and TONSL-AS1 in 30 paired clinical triple-negative breast cancer samples without gBRCAm.Results:We developed an 8-lncRNA signature in the training cohort including HAGLROS, AL139002.1, AL391244.2, AP000696.1, AL391056.1, AL513304.1, TONSL-AS1 and AL031008.1. In both the training and validation cohort, patients with higher risk scores showed significantly worse overall survival compared to those with lower risk scores(P=0.00018 and P =0.0068 respectively). 1, 5, 8-year AUC in the training cohort were 1.000, 1.000 and 0.908 respectively, in the validation cohort were 0.785, 0.790 and 0.892 respectively indicating that our signature has a good prognostic capacity. Signature related mRNA mainly enriched in terms include RNA metabolic process, DNA repair pathways, and so on. Two potential lncRNAs HAGLROS and TONSL-AS1 were found frequently overexpressed in TNBC without gBRCAm, and significantly associated with tumor grade and invasion.Conclusions: We constructed a novel 8-lncRNA signaturewhich significantly associated with the overall survival of TNBC patients without gBRCAm. Among those 8lncRNAs, HAGLROS and TONSL-AS1 may be potential therapeutic targetswhich function needed further exploration.

2020 ◽  
Author(s):  
Minling Liu ◽  
Wei Dai ◽  
Mengyuan Zhu ◽  
Xueying Li ◽  
Shan Huang ◽  
...  

Abstract Background Triple-negative breast cancer (TNBC) is a particular breast cancer subtype with poor prognosis due to its aggressive biological behavior and strong heterogeneity. TNBC with germline BRCA1/2 mutation (gBRCAm) have higher sensitivity to DNA damaging agents including platinum-based chemotherapy and PARP inhibitors. But the treatment of TNBC without gBRCAm remains challenging. This study aimed to develop a long non-coding RNA (lncRNA) signature of TNBC patients without gBRCAm to improve risk stratification and optimize individualized treatment. Methods 98 TNBC patients without gBRCAm were acquired from The Cancer Genome Atlas (TCGA) database. The univariable Cox regression analysis and LASSO Cox regression model were applied to establish an lncRNA signature in the training cohort (N = 59). Then Kaplan–Meier survival curve and time-dependent ROC curve were used to validate the prognostic ability of the signature. The signature related mRNAs were identified using the Pearson correlation. Functional enrichment analysis of related mRNA was performed using the Metascape. The qPCR assay was performed to confirm the expressions and clinicopathological correlationsof two potential lncRNAs HAGLROS and TONSL-AS1 in 30 paired clinical triple-negative breast cancer samples without gBRCAm. Results We developed an 8-lncRNA signature in the training cohort including HAGLROS, AL139002.1, AL391244.2, AP000696.1, AL391056.1, AL513304.1, TONSL-AS1 and AL031008.1. In both the training and validation cohort, patients with higher risk scores showed significantly worse overall survival compared to those with lower risk scores(P = 0.00018 and P = 0.0068 respectively). 1, 5, 8-year AUC in the training cohort were 1.000, 1.000 and 0.908 respectively, in the validation cohort were 0.785, 0.790 and 0.892 respectively indicating that our signature has a good prognostic capacity. Signature related mRNA mainly enriched in terms include RNA metabolic process, DNA repair pathways, and so on. Two potential lncRNAs HAGLROS and TONSL-AS1 were found frequently overexpressed in TNBC without gBRCAm, and significantly associated with tumor grade and invasion. Conclusions We constructed a novel 8-lncRNA signaturewhich significantly associated with the overall survival of TNBC patients without gBRCAm. Among those 8lncRNAs, HAGLROS and TONSL-AS1 may be potential therapeutic targetswhich function needed further exploration.


2021 ◽  
Vol 3 (3) ◽  
pp. 15-32
Author(s):  
Minling LIU ◽  
Wei DAI ◽  
Mengyuan ZHU ◽  
Xueying LI ◽  
Min WEI ◽  
...  

Purpose: TNBC with germline BRCA1/2 mutation (gBRCAm) have higher sensitivity to DNA damaging agents including platinum-based chemotherapy and PARP inhibitors. But the treatment of TNBC without gBRCAm remains challenging. This study aimed to develop a long non-coding RNA (lncRNA) signature of TNBC patients without gBRCAm to improve risk stratification and optimize individualized treatment. Methods: 98 TNBC patients without gBRCAm were acquired from The Cancer Genome Atlas database. The univariable Cox regression analysis and LASSO Cox regression model were applied to establish an lncRNA signature in the training cohort. Then Kaplan–Meier survival curve and time-dependent ROC curve were used to validate the prognostic ability of the signature. The qPCR assay was performed to confirm the expressions and clinicopathological correlations of two potential lncRNAs HAGLROS and TONSL-AS1 in 30 paired clinical triple-negative breast cancer samples without gBRCAm. Results: We developed an 8-lncRNA signature in the training cohort including HAGLROS, AL139002.1, AL391244.2, AP000696.1, AL391056.1, AL513304.1, TONSL-AS1 and AL031008.1. Patients with higher risk scores showed significantly worse overall survival compared to those with lower risk scores (P=0.00018 and P =0.0068 respectively). 30 paired specimens of TNBC without gBRCAm in our center showed that two potential lncRNAs HAGLROS and TONSL-AS1 were found frequently overexpressed, and significantly associated with tumor grade and invasion. Conclusion: We constructed a novel 8-lncRNA signature which significantly associated with the overall survival of TNBC patients without gBRCAm. Among those 8 lncRNAs, HAGLROS and TONSL-AS1 may be potential therapeutic targets which function needed further exploration.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wenxing Qin ◽  
Feng Qi ◽  
Jia Li ◽  
Ping Li ◽  
Yuan-Sheng Zang

The objective of this study was to construct a competitive endogenous RNA (ceRNA) regulatory network using differentially expressed long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and mRNAs in patients with triple-negative breast cancer (TNBC) and to construct a prognostic model for predicting overall survival (OS) in patients with TNBC. Differentially expressed lncRNAs, miRNAs, and mRNAs in TNBC patients from the TCGA and Metabric databases were examined. A prognostic model based on prognostic scores (PSs) was established for predicting OS in TNBC patients, and the performance of the model was assessed by a recipient that operated on a distinctive curve. A total of 874 differentially expressed RNAs (DERs) were screened, among which 6 lncRNAs, 295 miRNAs and 573 mRNAs were utilized to construct targeted and coexpression ceRNA regulatory networks. Eight differentially expressed genes (DEGs) associated with survival prognosis, DBX2, MYH7, TARDBP, POU4F1, ABCB11, LHFPL5, TRHDE and TIMP4, were identified by multivariate Cox regression and then used to establish a prognostic model. Our study shows that the ceRNA network has a critical role in maintaining the aggressiveness of TNBC and provides comprehensive molecular-level insight for predicting individual mortality hazards for TNBC patients. Our data suggest that these prognostic mRNAs from the ceRNA network are promising therapeutic targets for clinical intervention.


Author(s):  
Jindong Xie ◽  
Yutian Zou ◽  
Feng Ye ◽  
Wanzhen Zhao ◽  
Xinhua Xie ◽  
...  

Regarded as the most invasive subtype, triple-negative breast cancer (TNBC) lacks the expression of estrogen receptors (ERs), progesterone receptors (PRs), and human epidermal growth factor receptor 2 (HER2) proteins. Platelets have recently been shown to be associated with metastasis of malignant tumors. Nevertheless, the status of platelet-related genes in TNBC and their correlation with patient prognosis remain unknown. In this study, the expression and variation levels of platelet-related genes were identified and patients with TNBC were divided into three subtypes. We collected cohorts from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. By applying the least absolute shrinkage and selection operator (LASSO) Cox regression method, we constructed a seven-gene signature which classified the two cohorts of patients with TNBC into low- or high-risk groups. Patients in the high-risk group were more likely to have lower survival rates than those in the low-risk group. The risk score, incorporated with the clinical features, was confirmed as an independent factor for predicting the overall survival (OS) time. Functional enrichment analyses revealed the involvement of a variety of vital biological processes and classical cancer-related pathways that could be important to the ultimate prognosis of TNBC. We then built a nomogram that performed well. Moreover, we tested the model in other cohorts and obtained positive outcomes. In conclusion, platelet-related genes were closely related to TNBC, and this novel signature could serve as a tool for the assessment of clinical prognosis.


2021 ◽  
Author(s):  
Cheng Yan ◽  
Qingling Liu ◽  
Ruoling Jia

Abstract Background: Autophagy plays an important role in triple negative breast cancer (TNBC). However, the prognostic value of autophagy-related genes (ARGs) in TNBC remains unknown. In this study, we established a survival model to evaluate the prognosis of TNBC patients using ARGs signature.Methods: A total of 222 autophagy-related genes were downloaded from The Human Autophagy Database. The RNA-sequencing data and corresponding clinical data of TNBC were obtained from the TCGA database. Differential gene expression of ARGs (DE-ARGs) between normal samples and TNBC samples was determined by the EdgeR software package. Then, univariate Cox, Lasso, and multivariate Cox regression analyses were performed. According to the Lasso regression results based on univariate Cox, we identified a prognostic signature for overall-survival (OS), which was further validated by using GEO cohort. We also found an independent prognostic marker that can predict the clinicopathological features of TNBC. Furthermore, a nomogram was drawn to predict the survival probability of TNBC patients, which could help in clinical decision for TNBC treatment. Finally, we validated the requirement of a ARG in our model for TNBC cell survival and metastasis.Results: There are 43 differentially expressed ARGs (DE-ARGs) were identified between normal and tumor samples. A risk model for OS using CDKN1A, CTSD, CTSL, EIF4EBP1, TMEM74 and VAMP3 by Lasso regression analysis was established based on univariate Cox regression analysis. Overall survival of TNBC patients was significantly shorter in the high-risk group than in the low-risk group for both the training and validation cohorts. Using the Kaplan-Meier curves and ROC curves, we demonstrated the accuracy of the prognostic model. Multivariate Cox regression analysis was used to verify risk score as independent predictor. Then a nomogram was proposed to predict 1-, 3-, and 5-year survival for TNBC patients. The calibration curves showed great accuracy of the model for survival prediction. Finally, we found that depletion of EIF4EBP1, one of ARGs in our model, significantly reduced cell proliferation and metastasis of TNBC cells. Conclusion: An autophagy-related prognosis model in TNBCs was constructed using ARGs signature containing CDKN1A, CTSD, CTSL, EIF4EBP1, TMEM74 and VAMP3. It could serve as an independent prognostic biomarker in TNBC.


Author(s):  
Jianyang Hu ◽  
Yuni Lai ◽  
Hao Huang ◽  
Saravanan Ramakrishnan ◽  
Yilin Pan ◽  
...  

Abstract Background Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with poor prognosis. By performing multiomic profiling, we recently uncovered super-enhancer heterogeneity between breast cancer subtypes. Our data also revealed TCOF1 as a putative TNBC-specific super-enhancer-regulated gene. TCOF1 plays a critical role in craniofacial development but its function in cancer remains unclear. Methods Overall survival and multivariant Cox regression analyses were conducted using the METABRIC data set. The effect of TCOF1 knockout on TNBC growth and stemness was evaluated by in vitro and in vivo assays. RNA-seq and rescue experiments were performed to explore the underlying mechanisms. Results TCOF1 is frequently upregulated in TNBC and its elevated expression correlates with shorter overall survival. TCOF1 depletion significantly inhibits the growth and stemness of basal-like TNBC, but not of mesenchymal-like cells, highlighting the distinct molecular dependency in different TNBC subgroups. RNA-seq uncovers several stem cell molecules regulated by TCOF1. We further demonstrate that KIT is a downstream effector of TCOF1 in mediating TNBC stemness. TCOF1 expression in TNBC is regulated by the predicted super-enhancer. Conclusions TCOF1 depletion potently attenuates the growth and stemness of basal-like TNBC. Expression of TCOF1 may serve as a TNBC prognostic marker and a therapeutic target.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yiduo Liu ◽  
Linxin Teng ◽  
Shiyi Fu ◽  
Guiyang Wang ◽  
Zhengjun Li ◽  
...  

Abstract Background Triple-negative breast cancer (TNBC) is a highly heterogeneous subtype of breast cancer, showing aggressive clinical behaviors and poor outcomes. It urgently needs new therapeutic strategies to improve the prognosis of TNBC. Bioinformatics analyses have been widely used to identify potential biomarkers for facilitating TNBC diagnosis and management. Methods We identified potential biomarkers and analyzed their diagnostic and prognostic values using bioinformatics approaches. Including differential expression gene (DEG) analysis, Receiver Operating Characteristic (ROC) curve analysis, functional enrichment analysis, Protein-Protein Interaction (PPI) network construction, survival analysis, multivariate Cox regression analysis, and Non-negative Matrix Factorization (NMF). Results A total of 105 DEGs were identified between TNBC and other breast cancer subtypes, which were regarded as heterogeneous-related genes. Subsequently, the KEGG enrichment analysis showed that these genes were significantly enriched in ‘cell cycle’ and ‘oocyte meiosis’ related pathways. Four (FAM83B, KITLG, CFD and RBM24) of 105 genes were identified as prognostic signatures in the disease-free interval (DFI) of TNBC patients, as for progression-free interval (PFI), five genes (FAM83B, EXO1, S100B, TYMS and CFD) were obtained. Time-dependent ROC analysis indicated that the multivariate Cox regression models, which were constructed based on these genes, had great predictive performances. Finally, the survival analysis of TNBC subtypes (mesenchymal stem-like [MSL] and mesenchymal [MES]) suggested that FAM83B significantly affected the prognosis of patients. Conclusions The multivariate Cox regression models constructed from four heterogeneous-related genes (FAM83B, KITLG, RBM24 and S100B) showed great prediction performance for TNBC patients’ prognostic. Moreover, FAM83B was an important prognostic feature in several TNBC subtypes (MSL and MES). Our findings provided new biomarkers to facilitate the targeted therapies of TNBC and TNBC subtypes.


2021 ◽  
Author(s):  
Xiaorui Han ◽  
Zaiyi Liu ◽  
Changhong Liang

Abstract Background: Triple negative breast cancer (TNBC) is one of the most disastrous breast cancer subtypes world widely. The tumor microenvironment (TME), especially the infiltration of immune and stromal cells, are highly related to the occurrence, development and prognosis of breast cancer. Therefore, exploration of TME-related biomarkers is greatly important for improving overall survival rate of TNBC patients. Methods: The open-assess Cancer Genome Atlas (TCGA) database provides gene expression profile for a variety of malignant tumors allowing researchers to explore genes demonstrating TME in the prognosis prediction of TNBC. In our present study, ESTIMATE algorithm was used to calculate the immune and stromal scores in accordance with the characteristics of specific genes in immune and stromal cells, and divide them into high and low-score groups. Limma R package was then utilized to screen differentially expressed genes (DEGs). After that, functional enrichment analysis and protein-protein interaction (PPI) network were performed to explore the bio-information of the DEGs and their encoded proteins. Subsequently, the identified these genes were further verified in the Gene Expression Omnibus (GEO) datasets. Results: Eight genes, including ACAP1, DUSP1, LYZGZMA, SASH3, CCL5, CD74, and DPT, were explored to closely related to the TME of TNBC. A prognostic model containing these selected genes was established with a high efficiency in the prediction of the poor prognosis of TNBC patients.Conclusion: An eight-gene prognostic model was a considerably reliable approach for predicting the overall survival of TNBC patients, and could help clinicians selecting personalized treatments for their TNBC patients.


2021 ◽  
Author(s):  
Xiaomin Yang ◽  
Kunlong Li ◽  
Zhangjun Song ◽  
Huxia Wang ◽  
Sai He ◽  
...  

Abstract Background: Due the rarity of occult breast cancer (OBC), no precise prognostic instruments were available to assess the overall survival (OS) in patients with OBC. The aim of this study is to construct a nomogram for predicting the OS probability in patients with OBC. Methods: Patients who were enrolled in the Surveillance, Epidemiology, and End Results database between 2004 and 2015 were regarded as subjects and studied. We constructed a dynamic nomogram that can predict prognosis in patients with OBC based on crucial independent factors by using univariate and multivariate Cox regression analyses. C-index and calibration plots were chosen for validation. Net reclassification index (NRI), integrated discrimination improvement (IDI) and DCA (Ddecision Curve Analysis) were used to evaluate the nomogram’s clinical pragmatism. Results: Totally, 693 patients with OBC were included in this study. The nomogram integrated six independent prognostic factors through multivariate Cox regression analysis, such as surgical method, radiotherapy status, chemotherapy status, ER status, AJCC-stage and age. The prediction model exhibited robustness with the C-index 0.75 (95%CI: 0.72-0.77) in training cohort and 0.79 (95%CI: 0.76-0.82) in validation group. Moreover, the calibration curves presented favorably. The NRI values of 0.61 (95%CI: 0.28-0.99) for 5-year,0.53 (95%CI: 0.23-0.77) for 8-year OS prediction in the training cohort,0.75 (95%CI: 0.36-1.23) for 5-year and 0.6 (95%CI: 0.15-1.2) for 8-year OS prediction in the validation cohort,and the IDI values of 0.1 (95%CI: 0.04-0.17) for 5-year and 0.11 (95%CI: 0.03-0.19) for 8-year OS prediction in the training cohort, 0.21 (95%CI: 0.09-0.3) for 5-year and 0.22 (95%CI: 0.08-0.32) for 8-year OS prediction in the validation cohort,, indicated that the established nomogram performed significantly better than the AJCC stage system alone. Furthermore, DCA showed that the nomogram in our study was clinically useful and had better discriminative ability than the AJCC stage system. Conclusions: A nomogram was developed and validated to accurately predict the individualized probability OS for patients with occult breast cancer (OBC) and is expected to offer guidance for strategic decision.


2021 ◽  
Vol 15 (1) ◽  
pp. 43-55
Author(s):  
Chao Yuan ◽  
Hongjun Yuan ◽  
Li Chen ◽  
Miaomiao Sheng ◽  
Wenru Tang

Background: Triple-negative breast cancer (TNBC) is characterized by fast tumor increase, rapid recurrence and natural metastasis. We aimed to identify a genetic signature for predicting the prognosis of TNBC. Materials & methods: We conducted a weighted correlation network analysis of datasets from the Gene Expression Omnibus. Multivariate Cox regression was used to construct a risk score model. Results: The multi-factor risk scoring model was meaningfully associated with the prognosis of patients with TBNC. The predictive power of the model was demonstrated by the time-dependent receiver operating characteristic curve and Kaplan–Meier curve, and verified using a validation set. Conclusion: We established a long noncoding RNA-based model for the prognostic prediction of TNBC.


Sign in / Sign up

Export Citation Format

Share Document