scholarly journals Estimation of Nonlinear Parameters of Type 6 Hydrological Method in Flood Routing With the Spotted Hyena Optimizer Algorithm (SHO)

Author(s):  
Saeid Khalifeh ◽  
Kazem Esmaili ◽  
S. Reza Khodashenas ◽  
Fereshteh Modaresi

Abstract In this study, The Spotted hyena optimizer Algorithm (SHO) is used to optimize the parameters of the Non-linear type 6 Muskingum model for flood routing. To evaluate the performance of the SHO in the Non-linear Muskingum models, The Wilson River and the Wye River are applied by many researchers for validation. Moreover, in these studies, the Non-linear Muskingum parameters were estimated by the SHO Algorithm. The SSQ and DPO were considered as objective functions between computed and observed data. According to the results of Wilson river flood, the values of these objective functions for the NL3 model are 128.781, and 0.92 m3/s, and for the NL6 model, are 3.20 and 0.027, respectively. The results of the Wye River flood with the SHO showed that the SSQ and DPO for the NL3 model are 34789.39 and 90.05, and for the NL6 model are 30812.07 and 72.35, respectively. The results show that the proposed algorithm can be applied confidently to estimate the parameter optimal values of the nonlinear Muskingum model. Moreover, this algorithm may be applicable to any continuous engineering optimization problems.

2017 ◽  
Vol 10 (2) ◽  
pp. 214-220
Author(s):  
Briti Sundar Sil ◽  
Angana Borah ◽  
Shubrajyoti Deb ◽  
Biplab Das

Flood routing is of utmost importance to water resources engineers and hydrologist. Muskingum model is one of the popular methods for river flood routing which often require a huge computational work. To solve the routing parameters, most of the established methods require knowledge about different computer programmes and sophisticated models. So, it is beneficial to have a tool which is comfortable to users having more knowledge about everyday decision making problems rather than the development of computational models as the programmes. The use of micro-soft excel and its relevant tool like solver by the practicing engineers for normal modeling tasks has become common over the last few decades. In excel environment, tools are based on graphical user interface which are very comfortable for the users for handling database, modeling, data analysis and programming. GANetXL is an add-in for Microsoft Excel, a leading commercial spreadsheet application for Windows and MAC operating systems. GANetXL is a program that uses a Genetic Algorithm to solve a wide range of single and multi-objective problems. In this study, non-linear Muskingum routing parameters are solved using GANetXL. Statistical Model performances are compared with the earlier results and found satisfactory.


2017 ◽  
Vol 10 (2) ◽  
pp. 214-220
Author(s):  
Briti Sundar Sil ◽  
Angana Borah ◽  
Shubrajyoti Deb ◽  
Biplab Das

Flood routing is of utmost importance to water resources engineers and hydrologist. Muskingum model is one of the popular methods for river flood routing which often require a huge computational work. To solve the routing parameters, most of the established methods require knowledge about different computer programmes and sophisticated models. So, it is beneficial to have a tool which is comfortable to users having more knowledge about everyday decision making problems rather than the development of computational models as the programmes. The use of micro-soft excel and its relevant tool like solver by the practicing engineers for normal modeling tasks has become common over the last few decades. In excel environment, tools are based on graphical user interface which are very comfortable for the users for handling database, modeling, data analysis and programming. GANetXL is an add-in for Microsoft Excel, a leading commercial spreadsheet application for Windows and MAC operating systems. GANetXL is a program that uses a Genetic Algorithm to solve a wide range of single and multi-objective problems. In this study, non-linear Muskingum routing parameters are solved using GANetXL. Statistical Model performances are compared with the earlier results and found satisfactory.


2022 ◽  
pp. 1-37
Author(s):  
Krupali Devendra Kanekar ◽  
Rahul Agrawal ◽  
Dhiraj Magare

A method of optimization is used to resolve issues smartly by selecting the better option from various existing possibilities. Many optimization problems are possessing characteristics, namely nonlinearity, complexity, multimodal approach, and incompatible objective functions. Sometimes even for individual simple and linear type objective functions, a solution that is optimal and does not exist, there is uncertainness of obtaining the best solution. The aim of finding methods that can resolve various issues in a defined manner potentially has found the concentration of different researchers responsible for performing the advancement of a new “intelligent” technique called meta-heuristics technique. In the last few years, there is an advancement of various meta-heuristics techniques in different areas or various fields. Meta-heuristics are a demanded thrust stream of research that showed important advancement in finding the answer to problems that are optimized. The chapter gives the guidance for enhancing research more meaningfully.


2020 ◽  
Vol 173 (3) ◽  
pp. 109-120 ◽  
Author(s):  
Omid Bozorg-Haddad ◽  
Sahar Mohammad-Azari ◽  
Farzan Hamedi ◽  
Maryam Pazoki ◽  
Hugo A. Loáiciga

Author(s):  
Pengfei (Taylor) Li ◽  
Peirong (Slade) Wang ◽  
Farzana Chowdhury ◽  
Li Zhang

Traditional formulations for transportation optimization problems mostly build complicating attributes into constraints while keeping the succinctness of objective functions. A popular solution is the Lagrangian decomposition by relaxing complicating constraints and then solving iteratively. Although this approach is effective for many problems, it generates intractability in other problems. To address this issue, this paper presents an alternative formulation for transportation optimization problems in which the complicating attributes of target problems are partially or entirely built into the objective function instead of into the constraints. Many mathematical complicating constraints in transportation problems can be efficiently modeled in dynamic network loading (DNL) models based on the demand–supply equilibrium, such as the various road or vehicle capacity constraints or “IF–THEN” type constraints. After “pre-building” complicating constraints into the objective functions, the objective function can be approximated well with customized high-fidelity DNL models. Three types of computing benefits can be achieved in the alternative formulation: ( a) the original problem will be kept the same; ( b) computing complexity of the new formulation may be significantly reduced because of the disappearance of hard constraints; ( c) efficiency loss on the objective function side can be mitigated via multiple high-performance computing techniques. Under this new framework, high-fidelity and problem-specific DNL models will be critical to maintain the attributes of original problems. Therefore, the authors’ recent efforts in enhancing the DNL’s fidelity and computing efficiency are also described in the second part of this paper. Finally, a demonstration case study is conducted to validate the new approach.


2021 ◽  
Vol 13 (13) ◽  
pp. 7152
Author(s):  
Mike Spiliotis ◽  
Alvaro Sordo-Ward ◽  
Luis Garrote

The Muskingum method is one of the widely used methods for lumped flood routing in natural rivers. Calibration of its parameters remains an active challenge for the researchers. The task has been mostly addressed by using crisp numbers, but fuzzy seems a reasonable alternative to account for parameter uncertainty. In this work, a fuzzy Muskingum model is proposed where the assessment of the outflow as a fuzzy quantity is based on the crisp linear Muskingum method but with fuzzy parameters as inputs. This calculation can be achieved based on the extension principle of the fuzzy sets and logic. The critical point is the calibration of the proposed fuzzy extension of the Muskingum method. Due to complexity of the model, the particle swarm optimization (PSO) method is used to enable the use of a simulation process for each possible solution that composes the swarm. A weighted sum of several performance criteria is used as the fitness function of the PSO. The function accounts for the inclusive constraints (the property that the data must be included within the produced fuzzy band) and for the magnitude of the fuzzy band, since large uncertainty may render the model non-functional. Four case studies from the references are used to benchmark the proposed method, including smooth, double, and non-smooth data and a complex, real case study that shows the advantages of the approach. The use of fuzzy parameters is closer to the uncertain nature of the problem. The new methodology increases the reliability of the prediction. Furthermore, the produced fuzzy band can include, to a significant degree, the observed data and the output of the existent crisp methodologies even if they include more complex assumptions.


2021 ◽  
Vol 26 (2) ◽  
pp. 27
Author(s):  
Alejandro Castellanos-Alvarez ◽  
Laura Cruz-Reyes ◽  
Eduardo Fernandez ◽  
Nelson Rangel-Valdez ◽  
Claudia Gómez-Santillán ◽  
...  

Most real-world problems require the optimization of multiple objective functions simultaneously, which can conflict with each other. The environment of these problems usually involves imprecise information derived from inaccurate measurements or the variability in decision-makers’ (DMs’) judgments and beliefs, which can lead to unsatisfactory solutions. The imperfect knowledge can be present either in objective functions, restrictions, or decision-maker’s preferences. These optimization problems have been solved using various techniques such as multi-objective evolutionary algorithms (MOEAs). This paper proposes a new MOEA called NSGA-III-P (non-nominated sorting genetic algorithm III with preferences). The main characteristic of NSGA-III-P is an ordinal multi-criteria classification method for preference integration to guide the algorithm to the region of interest given by the decision-maker’s preferences. Besides, the use of interval analysis allows the expression of preferences with imprecision. The experiments contrasted several versions of the proposed method with the original NSGA-III to analyze different selective pressure induced by the DM’s preferences. In these experiments, the algorithms solved three-objectives instances of the DTLZ problem. The obtained results showed a better approximation to the region of interest for a DM when its preferences are considered.


Sign in / Sign up

Export Citation Format

Share Document