scholarly journals Maternal Underweight Does Not Adversely Affect The Outcomes of IVF/ICSI and Frozen Embryo Transfer Cycles or Early Embryo Development

Author(s):  
Dana Hoffman ◽  
Yael Kalma ◽  
Nivin Samara ◽  
Einat Haikin Herzberger ◽  
Sagi Levi ◽  
...  

Abstract Purpose To compare assisted reproductive technology (ART) outcomes and preimplantation embryo development between underweight and normal weight women. Methods This retrospective cohort study included 26 underweight women (body mass index [BMI] < 18.50 kg/m2) and 104 normal weight women (BMI > 20 and < 24.9 kg/m2) who underwent a total of 204 in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) cycles and 358 fresh/frozen embryo transfers (ET) in our institution between January 2016 and December 2018. Statistical analyses compared selected ART outcomes (ovarian stimulation, fertilization, and pregnancy) between both weight groups. Morphokinetic and morphological parameters were also compared between 346 and 1467 embryos of underweight and normal weight women, respectively. Results The mean ± standard deviation age of the underweight and normal weight women was similar (31.6 ± 4.17 vs 32.4 ± 3.59 years; p = 0.323). There were no differences in the peak estradiol levels, the number of retrieved oocytes, the number of metaphase II oocytes, and the oocyte maturity rates between the two groups. The IVF/ICSI fertilization rates and the number of embryos suitable for transfer or cryopreservation were similar for both groups. All morphokinetic parameters that were evaluated by means of time-lapse imaging as well as the morphological characteristics were comparable between low and normal BMI categories. There were no significant differences in pregnancy achievement, clinical pregnancy, live births, and miscarriage rates between the suboptimal and optimal weight women. Conclusion Underweight status has no adverse impacts on the outcomes of IVF/ICSI with either fresh or frozen ET or on preimplantation embryo development and quality.

Reproduction ◽  
2004 ◽  
Vol 128 (3) ◽  
pp. 281-291 ◽  
Author(s):  
Andrea Jurisicova ◽  
Beth M Acton

Human preimplantation embryo development is prone to high rates of early embryo wastage, particularly under currentin vitroculture conditions. There are many possible underlying causes for embryo demise, including DNA damage, poor embryo metabolism and the effect of suboptimal culture media, all of which could result in an imbalance in gene expression and the failed execution of basic embryonic decisions. In view of the complex interactions involved in embryo development, a thorough understanding of these parameters is essential to improving embryo quality. An increasing body of evidence indicates that cell fate (i.e. survival/differentiation or death) is determined by the outcome of specific intracellular interactions between pro- and anti-apoptotic proteins, many of which are expressed during oocyte and preimplantation embryo development. The recent availability of mutant mice lacking expression of various genes involved in the regulation of cell survival has enabled rapid progress towards identifying those molecules that are functionally important for normal oocyte and preimplantation embryo development. In this review we will discuss the current understanding of the regulation of cell death gene expression during preimplantation embryo development, with a focus on human embryology and a discussion of animal models where appropriate.


2021 ◽  
Author(s):  
Angela Christina Saleh ◽  
Reem Sabry ◽  
Gabriela Fabiana Mastromonaco ◽  
Laura Alessandra Favetta

Abstract Background Exposure to endocrine-disrupting chemicals, such as Bisphenol A (BPA) and Bisphenol S (BPS), is widespread and has negative implications on embryonic development. Preliminary evidence revealed that in women undergoing IVF treatment, urinary BPA levels were associated with low serum anti-Mullerian hormone, however a definitive relationship between the two has not yet been characterized. Methods This study aimed to evaluate BPA and BPS effects on in vitro oocyte maturation and early preimplantation embryo development through i) analysis of anti-Mullerian hormone (AMH) and anti-Mullerian hormone receptor II (AMHRII), ii) investigation of developmental parameters, such as cleavage, blastocyst rates and developmental arrest, iii) detection of apoptosis and iv) assessment of possible sex ratio skew. An in vitro bovine model was used as a translational model for human early embryonic development. We first assessed AMH and AMHRII levels after bisphenol exposure during oocyte maturation. Zygotes were also analyzed during cleavage and blastocysts stages. Techniques used include in vitro fertilization, quantitative polymerase chain reaction (qPCR), western blotting, TUNEL and immunofluorescence. Results Our findings show that BPA significantly decreased cleavage (p < 0.001), blastocyst (p < 0.005) and overall developmental rates as well as significantly increased embryonic arrest at the 2–4 cell stage (p < 0.05). Additionally, both BPA and BPS significantly increased DNA fragmentation in 2–4 cells, 8–16 cells and blastocyst embryos (p < 0.05). Furthermore, BPA and BPS alter AMH and AMHRII at the mRNA and protein level in both oocytes and blastocysts. BPA, but not BPS, also significantly skews sex ratios towards female blastocysts (p < 0.05) Conclusion This study shows that BPA affects AMH and AMHRII expression during oocyte maturation and that BPS exerts its effects to a greater extent after fertilization and therefore may not be a safer alternative to BPA. Our data lay the foundation for future functional studies, such as receptor kinetics, downstream effectors, and promoter activation/inhibition to prove a functional relationship between bisphenols and the AMH signalling system.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Angela Christina Saleh ◽  
Reem Sabry ◽  
Gabriela Fabiana Mastromonaco ◽  
Laura Alessandra Favetta

Abstract Background Exposure to endocrine-disrupting chemicals, such as Bisphenol A (BPA) and Bisphenol S (BPS), is widespread and has negative implications on embryonic development. Preliminary evidence revealed that in women undergoing IVF treatment, urinary BPA levels were associated with low serum anti-Mullerian hormone, however a definitive relationship between the two has not yet been characterized. Methods This study aimed to evaluate BPA and BPS effects on in vitro oocyte maturation and early preimplantation embryo development through i) analysis of anti-Mullerian hormone (AMH) and anti-Mullerian hormone receptor II (AMHRII), ii) investigation of developmental parameters, such as cleavage, blastocyst rates and developmental arrest, iii) detection of apoptosis and iv) assessment of possible sex ratio skew. An in vitro bovine model was used as a translational model for human early embryonic development. We first assessed AMH and AMHRII levels after bisphenol exposure during oocyte maturation. Zygotes were also analyzed during cleavage and blastocysts stages. Techniques used include in vitro fertilization, quantitative polymerase chain reaction (qPCR), western blotting, TUNEL and immunofluorescence. Results Our findings show that BPA significantly decreased cleavage (p < 0.001), blastocyst (p < 0.005) and overall developmental rates as well as significantly increased embryonic arrest at the 2–4 cell stage (p < 0.05). Additionally, both BPA and BPS significantly increased DNA fragmentation in 2–4 cells, 8–16 cells and blastocyst embryos (p < 0.05). Furthermore, BPA and BPS alter AMH and AMHRII at the mRNA and protein level in both oocytes and blastocysts. BPA, but not BPS, also significantly skews sex ratios towards female blastocysts (p < 0.05). Conclusion This study shows that BPA affects AMH and AMHRII expression during oocyte maturation and that BPS exerts its effects to a greater extent after fertilization and therefore may not be a safer alternative to BPA. Our data lay the foundation for future functional studies, such as receptor kinetics, downstream effectors, and promoter activation/inhibition to prove a functional relationship between bisphenols and the AMH signalling system.


Sign in / Sign up

Export Citation Format

Share Document