Insight into the Water Rock Interaction Process and Purification Mechanism of Mine Water in Underground Reservoir of Daliuta Coal Mine in China

Author(s):  
Binbin Jiang ◽  
Ju Gao ◽  
Kun Du ◽  
Xu Deng ◽  
Kai Zhang

Abstract The process of water rock interaction and the purification mechanism of mine water quality were not clear after being stored in underground reservoir. This study based on the analysis of the hydrochemical characteristics of the reservoir water samples and the characterization of the rock samples, combined with PHREEQC analysis, the mechanism of water quality purification of mine water was discussed. The results showed that the rocks in the underground reservoir had layered silicate structure and flaky kaolinite structure, with some irregular edges and micro cracks, and higher specific surface area and total pore volume. These characteristics made the rocks had a certain adsorption and removal capacity for heavy metal ions and other pollutants in the mine water. The water rock interaction, such as the dissolution of albite and halite, the precipitation of gypsum and kaolinite, and the cation exchange, resulted in the increase of the concentration of Na+ and the decrease of the concentration of Ca2+, Mg2+ and TDS in the outlet water. This study also showed that PHREEQC analysis can be used to analyze the water rock interaction of coal mine underground reservoir and obtained more detailed information.

Author(s):  
Zuosen Luo ◽  
Jianlin Li ◽  
Qiao Jiang ◽  
Yinchai Zhang ◽  
Yisheng Huang ◽  
...  

After the commencement of the Three Gorges hydropower project, the reservoir water level has been fluctuating by 30 m (145–175 m) annually. The stability of the bank slope has been highlighted since the reservoir water level has been repeated. Apart from that, the long-term effect of the water-rock interaction on the rheological and mechanical properties of the rock was not studied sufficiently. Therefore, a typical sandstone rock was brought from the Three Gorges reservoir area, to meet the purpose of this study. Then, a series of water-rock interaction tests were conducted to simulate the fluctuations in the reservoir water level. Based upon the experimental results, the following points were pointed out: 1) for the first three successive water-rock interaction cycles, the long-term strength of the rock was dramatically reduced. In contrast, the rate of reduction on the long-term strength of the rock was getting a steady state after six successive water rock interactions.2) At the failure stress level, the rock specimens exhibited similar characteristics under different water-rock interaction cycles. 3) The densely compacted micro structures of the sandstone rock were transformed into loose and porous state.


2021 ◽  
pp. 56-77
Author(s):  
Thyego Silva ◽  
Mariucha Lima ◽  
Teresa Leitão ◽  
Tiago Martins ◽  
Mateus Albuquerque

A hydrochemical study was conducted on the Quaternary Aquifer, in Recife, Brazil. Groundwater samples were collected in March–April 2015, at the beginning of the rainy season. Conventional graphics, ionic ratios, saturation indices, GIS mapping, and geostatistical and multivariate statistical analyses were used to water quality assessment and to characterize the main hydrochemical processes controlling groundwater’s chemistry. Q-mode hierarchical cluster analysis separated the samples into three clusters and five sub-clusters according to their hydrochemical similarities and facies. Principal Component Analysis (PCA) was employed to the studied groundwater samples where a three-factor model explains 80% of the total variation within the dataset. The PCA results revealed the influence of seawater intrusion, water-rock interaction, and nitrate contamination. The physico-chemical parameters of ~30% groundwaters exceed the World Health Organization (WHO) guidelines for drinking water quality. Nitrate was found at a concentration >10 mg NO3−/L in ~21% of the wells and exceeded WHO reference values in one. The integrated approach indicates the occurrence of the main major hydrogeochemical processes occurring in the shallow marine to alluvial aquifer as follow: 1) progressive freshening of remaining paleo-seawater accompanying cation exchange on fine sediments, 2) water-rock interaction (i.e., dissolution of silicates), and 3) point and diffuse wastewater contamination, and sulfate dissolution. This study successfully highlights the use of classical geochemical methods, GIS techniques, and multivariate statistical analyses (hierarchical cluster and principal component analyses) as complementary tools to understand hydrogeochemical processes and their influence on groundwater quality status to management actions, which could be used in similar alluvial coastal aquifers.


2016 ◽  
Vol 11 (3) ◽  
pp. 621-633
Author(s):  
J. Nathoo ◽  
E. Hong Gay ◽  
N. Hussain

The feed water quality associated with mine water treatment is typically characterised by a dynamic variability resulting from the fact that the final feed water to the water treatment plant (WTP) can be an amalgamation of water streams emanating from a number of sources. Consequently, the ability to deal with the dynamic nature of the feed water quality towards successful and sustainable mine water treatment goes beyond a proactive approach and requires a systemic, predictive approach. This paper discusses the development of an unsteady state mass balance model on a surface dam located on a coal mine towards predicting the dynamic fluctuations in total dam volume and its total dissolved solids (TDS) concentration in the feed water to a NuWater 20 MLD mobile WTP, comprising chemical conditioning, ultrafiltration and reverse osmosis (RO). The unsteady state mass balance, incorporated water entering the dam via the opencast pits, underground compartments, seasonal rainfall and the RO brine return. Water leaving the dam comprised the feed water to the WTP, partial brine treatment, surface evaporation and seepage. Validation of the model using actual data over an 8-month period showed excellent results. The model showed that without water treatment, the dam would overflow in 218 days. Although the dam's volume could be sustained at the ideal volume by treating 14.2 MLD, its TDS would exceed the maximum environmental limit in 197 days. Consequently, the combination of a 13.2 MLD WTP with a 1 MLD brine treatment plant provided the optimal water treatment strategy to sustainably maintain the dam's TDS concentration and volume within acceptable limits over the 5-year investigation period. This paper demonstrates the importance of using a predictive methodology for forecasting feed water characteristics and as an early warning system for most water treatment systems that are subjected to dynamic conditions.


Author(s):  
Bob Kleinmann ◽  
Jeff Skousen ◽  
Tom Wildeman ◽  
Bob Hedin ◽  
Bob Nairn ◽  
...  

AbstractThis paper reviews the early history (first 20 years) of passive treatment of mine water, from its beginnings, when it was viewed as a possible way to treat small flows of circumneutral and mildly acidic coal mine drainage, to its use for much larger flows and more contaminated mine water from metal mines. The original concepts of passive treatment have since been modified and used successfully to treat a wide range of mine water quality and quantities, far more than we would have believed possible.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yinchai Zhang ◽  
Huafeng Deng ◽  
Wei Wang ◽  
Lingling Duan ◽  
Yongyan Zhi ◽  
...  

During the reservoir operation process, the long-term security and stability of the bank slope is affected by dynamic response characteristics of its seismic action directly. Aimed at the typical bank slope existing in the actual reservoir environment, an experiment considering reservoir water level fluctuation and soaking-air-drying cyclic water-rock interaction has been designed and conducted while the cyclic loading test was performed in different water-rock cycles. Research results indicate the following: Firstly, in the process of water-rock interaction, the dynamic characteristics of sandstone show evident degradation trend, with the increase of the damping ratio and Poisson’s ratio and decrease of dynamic elastic modulus, and the former six water-rock cycle degradation effects are particularly obvious. Secondly, the numerical analog computation analysis of dynamic response in typical bank slope shows that as the water-rock interaction period is increased, the dynamic response of the slope hydro-fluctuation belt zone increases gradually, while the other parts weaken. Thirdly, under the long-term water-rock interaction process, the hydro-fluctuation belt zone gradually becomes a “soft layer” which is sensitive to the earthquake effect and dynamic response, resulting in a direct influence on long-term seismic performance of the bank slope. Therefore, it is necessary to make better protection for the bank slope hydro-fluctuation belt zone.


Sign in / Sign up

Export Citation Format

Share Document