scholarly journals The Mechanism of Iodine Enrichment in Groundwater from the North China Plain: Insight from Two Inland and Coastal Aquifer Sediment Boreholes

Author(s):  
Xiaobin Xue ◽  
Xianjun Xie ◽  
Junxia Li ◽  
Yuting Wang ◽  
Yanxin Wang

Abstract As an element relevant to human health, iodine is highly worthy of researchers’ attention, especially the mechanism of iodine migration and enrichment in groundwater systems. A total of 43 groundwater, 1 seawater, 107 sediment and 111 pore water samples from two boreholes (toward to Bohai Sea: BT, HH) were collected along a groundwater flow path at the North China Plain to investigate hydro-geochemical processes controlling groundwater iodine. High iodine groundwater (> 100 µg/L) was characterized by Na-Cl type, with high TDS values (827-2,400 mg/L) and high Cl (110–705 mg/L) and Br (416-1,180 µg/L) concentrations, which may be related to marine influence. Borehole BT and HH had pore water I concentration ranges of 1.4–132 µg/L and 3.6–830 µg/L, with high level occurred near to coastline and corresponded to ancient transgression events. The results of sequential extraction of borehole sediments indicate that the fractions of sediment inorganic iodine were mainly consist of exchangeable, carbonate and Fe-oxides associated fractions. Fe-oxides associated iodine was the main occurrence state in borehole BT far from the coastline, but high exchangeable iodine fractions (up to 92% of total extracted iodine) were observed in a high salinity borehole HH located near Bohai Bay, corresponding to the occurrence of high iodine pore water and groundwater. The analysis of iodine species indicates that iodide with strong migration ability dominated high iodine groundwater, pore water and exchangeable sediment iodine, reflecting the occurrence of adsorption/desorption processes of iodine in groundwater system. High iodine groundwater and pore water exhibited iodine enrichment relative to Cl and Br, suggests that iodine adsorbed on sediment desorbed under suitable pH and high solution ionic strength and subsequently released to pore water and aquifers. Inverse geochemical modeling stressed that ion exchange play an important role in iodine enrichment of groundwater system.

Author(s):  
Min Xue ◽  
Jianzhong Ma ◽  
Guiqian Tang ◽  
Shengrui Tong ◽  
Bo Hu ◽  
...  

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 46
Author(s):  
Gangqiang Zhang ◽  
Wei Zheng ◽  
Wenjie Yin ◽  
Weiwei Lei

The launch of GRACE satellites has provided a new avenue for studying the terrestrial water storage anomalies (TWSA) with unprecedented accuracy. However, the coarse spatial resolution greatly limits its application in hydrology researches on local scales. To overcome this limitation, this study develops a machine learning-based fusion model to obtain high-resolution (0.25°) groundwater level anomalies (GWLA) by integrating GRACE observations in the North China Plain. Specifically, the fusion model consists of three modules, namely the downscaling module, the data fusion module, and the prediction module, respectively. In terms of the downscaling module, the GRACE-Noah model outperforms traditional data-driven models (multiple linear regression and gradient boosting decision tree (GBDT)) with the correlation coefficient (CC) values from 0.24 to 0.78. With respect to the data fusion module, the groundwater level from 12 monitoring wells is incorporated with climate variables (precipitation, runoff, and evapotranspiration) using the GBDT algorithm, achieving satisfactory performance (mean values: CC: 0.97, RMSE: 1.10 m, and MAE: 0.87 m). By merging the downscaled TWSA and fused groundwater level based on the GBDT algorithm, the prediction module can predict the water level in specified pixels. The predicted groundwater level is validated against 6 in-situ groundwater level data sets in the study area. Compare to the downscaling module, there is a significant improvement in terms of CC metrics, on average, from 0.43 to 0.71. This study provides a feasible and accurate fusion model for downscaling GRACE observations and predicting groundwater level with improved accuracy.


2021 ◽  
Vol 20 (6) ◽  
pp. 1687-1700
Author(s):  
Li-chao ZHAI ◽  
Li-hua LÜ ◽  
Zhi-qiang DONG ◽  
Li-hua ZHANG ◽  
Jing-ting ZHANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document