scholarly journals Molecular Dynamics of The Early Stages of High Temperature Corrosion

Author(s):  
Sung-Yup Kim ◽  
Christopher D. Taylor

Abstract We performed molecular dynamics simulations of the high temperature oxidation of metal alloys composed of Al, Cr and Fe and compared their behavior with that of pure Fe. The metal alloy elements (Al and Cr) segregated to the surface during oxidation producing a lower stress gradient at the metal/environment interface compared to pure Fe. We have found that the lowered stress gradients produced in the alloy material appear to play a key role in the development of corrosion. Interfaces with lower stress gradients have reduced rates of H2O adsorption, especially for the ferritic (bcc) alloys. The diffusivity of oxygen and hydrogen drops more rapidly for the interfaces with reduced stress gradients. The stress gradient is also diminished when the gas pressure is increased, indicating that the Fe-Cr-Al alloy system is more resistant to oxidation than pure Fe at higher pressures. Therefore, we conclude that the lower stress gradients at the alloy/environment interface reduce the stress concentration and can slow down the rate of the initial oxide scale growth. We also compared bcc and fcc alloys with pure Fe based on our 3 evaluation criteria (peak stress, stress gradient and summation of stress in the oxide scale). We found that the alloys have lower values under the three criteria compared to pure Fe. The bcc alloy has the best score under a water rich environment and the fcc alloy is proven to be the better for peak stress and summation of stress in the oxide scale under an oxygen rich environment. For surface segregation to occur, we find that a minimum content of Al or Cr content in the near-surface region must be achieved.

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3764
Author(s):  
Krzysztof Aniołek ◽  
Adrian Barylski ◽  
Marian Kupka

High-temperature oxidation was performed at temperatures from 600 to 750 °C over a period of 24 h and 72 h. It was shown in the study that the oxide scale became more homogeneous and covered the entire surface as the oxidation temperature increased. After oxidation over a period of 24 h, the hardness of the produced layers increased as the oxidation temperature increased (from 892.4 to 1146.6 kgf/mm2). During oxidation in a longer time variant (72 h), layers with a higher hardness were obtained (1260 kgf/mm2). Studies on friction and wear characteristics of titanium were conducted using couples with ceramic balls (Al2O3, ZrO2) and with high-carbon steel (100Cr6) balls. The oxide films produced at a temperature range of 600–750 °C led to a reduction of the wear ratio value, with the lowest one obtained in tests with the 100Cr6 steel balls. Frictional contact of Al2O3 balls with an oxidized titanium disc resulted in a reduction of the wear ratio, but only for the oxide scales produced at 600 °C (24 h, 72 h) and 650 °C (24 h). For the ZrO2 balls, an increase in the wear ratio was observed, especially when interacting with the oxide films obtained after high-temperature oxidation at 650 °C or higher temperatures. The increase in wear intensity after titanium oxidation was also observed for the 100Cr6 steel balls.


2016 ◽  
Vol 83 (5) ◽  
Author(s):  
Hailong Wang ◽  
Shengping Shen

Using the location-dependent growth strain, a chemomechanical model is developed for the analysis of the stress evolution and distribution in the viscoplastic oxide scale during high-temperature oxidation. The problem of oxidizing a semi-infinite substrate is formulated and solved. The numerical results reveal high compressive stress and significant stress gradient. The maximum stress is at the oxide/substrate interface and the minimum stress at the oxygen/oxide interface in short oxidation time, while the maximum stress is no longer at the oxide/substrate interface in long oxidation time. The stress evolutions at different locations are also presented. The predicted results agree well with the experimental data.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 526
Author(s):  
Zhengyuan Li ◽  
Lijia Chen ◽  
Haoyu Zhang ◽  
Siyu Liu

The oxidation behavior and microstructural evolution of the nanostructure of Fe-Cr-Al oxide dispersion strengthened (ODS) alloys prepared by spark plasma sintering were investigated by high-temperature oxidation experiments in air at 1200 °C for 100 h. The formation of Al2O3 scale was observed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) line scans. The oxidation rate of Fe-Cr-Al ODS alloys is lower than that of conventional Fe-Cr-Al alloys, and the oxide layer formed on the Fe-Cr-Al alloy appeared loose and cracked, whereas the oxide layer formed on the Fe-Cr-Al ODS alloys was adherent and flat. This is due to the high density of dispersed nano-oxides hindering the diffusion of Al element and the formation of vacancies caused by them. In addition, the nano-oxides could also adhere to the oxide layer. Besides, the microstructure of the Fe-Cr-Al ODS alloy had excellent stability during high-temperature oxidation.


2018 ◽  
Vol 28 (1) ◽  
pp. 463-474 ◽  
Author(s):  
Amir Motallebzadeh ◽  
Shaikh Asad Ali Dilawary ◽  
Erdem Atar ◽  
Huseyin Cimenoglu

2008 ◽  
Vol 595-598 ◽  
pp. 1127-1134 ◽  
Author(s):  
Frédéric Riffard ◽  
Henri Buscail ◽  
F. Rabaste ◽  
Eric Caudron ◽  
Régis Cueff ◽  
...  

Chromia-forming steels are excellent candidates to resist to high temperature oxidizing atmospheres because they form protective oxide scales. The oxide scale growth mechanisms are studied by exposing AISI 304 stainless steel to high temperature conditions in air, and the analyses were carried out by means of thermogravimetry and in situ X-rays diffraction. The in situ XRD analyses carried out during high temperature AISI 304 steel oxidation in air reveals the accelerated growth of iron-containing oxides such as hematite Fe2O3 and iron-chromite FeCr2O4, when the initial germination of the oxide layer contains the presence of a manganese-containing spinel compound (1000°C). When the initial growth shows the only chromia formation (800°C), hematite formation appears differed in time. Protection against corrosion is thus increased when the initial germination of manganese-containing spinel oxide is inhibited in the oxide scale.


Sign in / Sign up

Export Citation Format

Share Document