scholarly journals Repurposing of FDA approved drugs targeting Main protease MPro for SARS-CoV-2

2020 ◽  
Author(s):  
Suryakant Tiwari ◽  
Raghav Jain ◽  
Indrani Banerjee

Abstract SARS-CoV-2 is one of the greatest pandemics in the history. There is no medicine or vaccine yet discovered to control the outbreak. The paper deals with repurposing existing drugs to control the outbreak of SARS-CoV-2 virus.Ten FDA-approved drugs namely Indinavir, Nelfinavir, Letermovir, Irinotecan, Elbasvir, Saquinavir, Darunavir, Raltegravir, Atazanavir and Amprenavir were studied. In silico methods for virtual screening of protein-ligand docking of these drugs against SARS-CoV-2 MPro was performed. The binding efficiency of the drugs against viral main protease MPro was significantly high to inhibit SARS-CoV-2.The results confirmed that Atazanavir, Nelfinavir, and Letermovir not only occupied the active site of Mpro but also showed increased binding affinity (-10.36 kcal/mole, -9.47 kcal/mole and -9.43 kcal/mole) even more than of control drugs of Lopinavir (-8.71 kcal/mole) and Ritonavir (-8.08 kcal/mole). These repurposed drugs can be used in combination or individually as an alternative approach for rapid drug discovery against SARS-CoV-2

Author(s):  
Fatemeh Sadat Hosseini ◽  
Mohammad Reza Motamedi

Background: At the onset of the 2020 year, Coronavirus disease (COVID-19) has become a pandemic and infected many people worldwide. Despite all efforts, no cure was found for this infection. Bioinformatics and medicinal chemistry have a potential role in the primary consideration of drugs to treat this infection. With virtual screening and molecular docking, some potent compounds and medications can be found and modified and then applied to treat disease in the next steps. Methods: By virtual screening method and PRYX software, some Food and Drug Administration (FDA) approved drugs and natural compounds have been docked with the SPIKE protein of SARS-CoV-2. Some more potent agents have been selected, and then new structures are designed with better affinity than them. After that, we searched for the molecules with a similar structure to designed compounds to find the most potent compound to our target. Results: Because of the study of structures and affinities, mulberrofuran G was the most potent compound in this study. The compound has interacted strongly with residues in the probably active site of SPIKE. Conclusion: Mulberrofuran G can be a treatment agent candidate for COVID-19 because of its good affinity to SPIKE of the virus and inhibition of virus-cell adhesion and entrance.


2020 ◽  
Author(s):  
Abhik Kumar Ray ◽  
Parth Sarthi Sen Gupta ◽  
Saroj Kumar Panda ◽  
Satyaranjan Biswal ◽  
Malay Kumar Rana

<p>COVID-19, responsible for several deaths, demands a cumulative effort of scientists worldwide to curb the pandemic. The main protease, responsible for the cleavage of the polyprotein and formation of replication complex in virus, is considered as a promising target for the development of potential inhibitors to treat the novel coronavirus. The effectiveness of FDA approved drugs targeting the main protease in previous SARS-COV (s) reported earlier indicates the chances of success for the repurposing of FDA drugs against SARS-COV-2. Therefore, in this study, molecular docking and virtual screening of FDA approved drugs, primarily of three categories: antiviral, antimalarial, and peptide, are carried out to investigate their inhibitory potential against the main protease. Virtual screening has identified 53 FDA drugs on the basis of their binding energies (< -7.0 kcal/mol), out of which the top two drugs Velpatasvir (-9.1 kcal/mol) and Glecaprevir (-9.0 kcal/mol) seem to have great promise. These drugs have a stronger affinity to the SARS-CoV-2 main protease than the crystal bound inhibitor α-ketoamide 13B (-6.7 kcal/mol) or Indinavir (-7.5 kcal/mol) that has been proposed in a recent study as one of the best drugs for SARS-CoV-2. The <i>in-silico</i> efficacies of the screened drugs could be instructive for further biochemical and structural investigation for repurposing. The molecular dynamics studies on the shortlisted drugs are underway. </p>


Author(s):  
Yogesh Kumar ◽  
Harvijay Singh

<div>The rapidly enlarging COVID-19 pandemic caused by novel SARS-coronavirus 2 is a global</div><div>public health emergency of unprecedented level. Therefore the need of a drug or vaccine that</div><div>counter SARS-CoV-2 is an utmost requirement at this time. Upon infection the ssRNA genome</div><div>of SARS-CoV-2 is translated into large polyprotein which further processed into different</div><div>nonstructural proteins to form viral replication complex by virtue of virus specific proteases:</div><div>main protease (3-CL protease) and papain protease. This indispensable function of main protease</div><div>in virus replication makes this enzyme a promising target for the development of inhibitors and</div><div>potential treatment therapy for novel coronavirus infection. The recently concluded α-ketoamide</div><div>ligand bound X-ray crystal structure of SARS-CoV-2 Mpro (PDB ID: 6Y2F) from Zhang et al.</div><div>has revealed the potential inhibitor binding mechanism and the determinants responsible for</div><div>involved molecular interactions. Here, we have carried out a virtual screening and molecular</div><div>docking study of FDA approved drugs primarily targeted for other viral infections, to investigate</div><div>their binding affinity in Mpro active site. Virtual screening has identified a number of antiviral</div><div>drugs, top ten of which on the basis of their bending energy score are further examined through </div><div>molecular docking with Mpro. Docking studies revealed that drug Lopinavir-Ritonavir, Tipranavir</div><div>and Raltegravir among others binds in the active site of the protease with similar or higher</div><div>affinity than the crystal bound inhibitor α-ketoamide. However, the in-vitro efficacies of the drug</div><div>molecules tested in this study, further needs to be corroborated by carrying out biochemical and</div><div>structural investigation. Moreover, this study advances the potential use of existing drugs to be</div><div>investigated and used to contain the rapidly expanding SARS-CoV-2 infection.</div>


Author(s):  
Yogesh Kumar ◽  
Harvijay Singh

<div>The rapidly enlarging COVID-19 pandemic caused by novel SARS-coronavirus 2 is a global</div><div>public health emergency of unprecedented level. Therefore the need of a drug or vaccine that</div><div>counter SARS-CoV-2 is an utmost requirement at this time. Upon infection the ssRNA genome</div><div>of SARS-CoV-2 is translated into large polyprotein which further processed into different</div><div>nonstructural proteins to form viral replication complex by virtue of virus specific proteases:</div><div>main protease (3-CL protease) and papain protease. This indispensable function of main protease</div><div>in virus replication makes this enzyme a promising target for the development of inhibitors and</div><div>potential treatment therapy for novel coronavirus infection. The recently concluded α-ketoamide</div><div>ligand bound X-ray crystal structure of SARS-CoV-2 Mpro (PDB ID: 6Y2F) from Zhang et al.</div><div>has revealed the potential inhibitor binding mechanism and the determinants responsible for</div><div>involved molecular interactions. Here, we have carried out a virtual screening and molecular</div><div>docking study of FDA approved drugs primarily targeted for other viral infections, to investigate</div><div>their binding affinity in Mpro active site. Virtual screening has identified a number of antiviral</div><div>drugs, top ten of which on the basis of their bending energy score are further examined through </div><div>molecular docking with Mpro. Docking studies revealed that drug Lopinavir-Ritonavir, Tipranavir</div><div>and Raltegravir among others binds in the active site of the protease with similar or higher</div><div>affinity than the crystal bound inhibitor α-ketoamide. However, the in-vitro efficacies of the drug</div><div>molecules tested in this study, further needs to be corroborated by carrying out biochemical and</div><div>structural investigation. Moreover, this study advances the potential use of existing drugs to be</div><div>investigated and used to contain the rapidly expanding SARS-CoV-2 infection.</div>


2021 ◽  
Vol 11 (1) ◽  
pp. 2965-2980

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shattered normal life across the world. This deadly virus displays many variants and has claimed many lives in various countries. Spike protein plays a major role in the transmission and infectivity of this virus. The scientific community is trying hard to reign this virus and save human lives. In this effort, drug repurposing has emerged as a reliable tool to screen FDA-approved drugs. In the present study, we did a virtual screening of 265 FDA-approved drugs against two important covid-19 targets (Non-structural protein & main protease) with PDB IDs 6W4H, 6LU7, and 6W63. A comparative analysis of the best drugs based on docking score, binding energy, and effective hits was done against both targets. Out of 265 molecules, the best 7 molecules showed reliable hits against both targets. Best seven drugs namely Saquinavir, Indinavir, Tenofovir Alafenamide, Ritonavir, Nelfinavir mesylate, Cefiderocol and Plazomicin. Our results suggest that these ligands, in combination or individually, can be taken as novel prospects for developing a drug against SARS CoV-2.


Author(s):  
Hasanain Abdulhameed Odhar ◽  
Salam Waheed Ahjel ◽  
Ali A. Mohammed Ali Albeer ◽  
Ahmed Fadhil Hashim ◽  
Suhad Sami Humadi

Yellow fever is a neglected hemorrhagic disease with a high case fatality rate ranging between 25% and 50% for the hospitalized patients. Yellow fever disease is caused by a zoonotic pathogen known as yellow fever virus. This RNA virus is usually transmitted by mosquitos and it is considered endemic in the tropical regions of South America and Africa. Although an effective vaccine is available for yellow fever virus, no antiviral drug is yet licensed against the disease. Thus, yellow fever virus is still representing a re-emerging threat among unvaccinated individuals in endemic regions. The NS2B-NS3 protease seems to play an important role in yellow fever virus replication cycle. As such, the NS2B-NS3 protease may represent a potential target for structure-based drug design and discovery. In this direction, computational approaches like virtual screening can be utilized to hasten the design of novel antivirals and/ or repurposing an already FDA approved drugs. In this in silico study, an FDA approved drugs library was screened against NS2B-NS3 protease crystal of yellow fever virus. Then the best hits with least energy of binding and ability of hydrogen bonding with key residues of protease active site were then selected and submitted to molecular dynamics simulation. And throughout simulation interval, only Olsalazine was able to stay in close proximity to the active site of protease crystal with least average MM-PBSA binding energy as compared to Dantrolene, Belinostat and Linezolid. This indicates that Olsalazine may have the best capacity to bind to NS2B-NS3 protease and interfere with its activity.


2020 ◽  
Author(s):  
Abhik Kumar Ray ◽  
Parth Sarthi Sen Gupta ◽  
Saroj Kumar Panda ◽  
Satyaranjan Biswal ◽  
Malay Kumar Rana

<p>COVID-19, responsible for several deaths, demands a cumulative effort of scientists worldwide to curb the pandemic. The main protease, responsible for the cleavage of the polyprotein and formation of replication complex in virus, is considered as a promising target for the development of potential inhibitors to treat the novel coronavirus. The effectiveness of FDA approved drugs targeting the main protease in previous SARS-COV (s) reported earlier indicates the chances of success for the repurposing of FDA drugs against SARS-COV-2. Therefore, in this study, molecular docking and virtual screening of FDA approved drugs, primarily of three categories: antiviral, antimalarial, and peptide, are carried out to investigate their inhibitory potential against the main protease. Virtual screening has identified 53 FDA drugs on the basis of their binding energies (< -7.0 kcal/mol), out of which the top two drugs Velpatasvir (-9.1 kcal/mol) and Glecaprevir (-9.0 kcal/mol) seem to have great promise. These drugs have a stronger affinity to the SARS-CoV-2 main protease than the crystal bound inhibitor α-ketoamide 13B (-6.7 kcal/mol) or Indinavir (-7.5 kcal/mol) that has been proposed in a recent study as one of the best drugs for SARS-CoV-2. The <i>in-silico</i> efficacies of the screened drugs could be instructive for further biochemical and structural investigation for repurposing. The molecular dynamics studies on the shortlisted drugs are underway. </p>


Sign in / Sign up

Export Citation Format

Share Document