scholarly journals Plasma Phosphorylated-tau181 is a Predictor of Post-Stroke Cognitive Impairment: A Longitudinal Study

Author(s):  
Li-Kai Huang ◽  
Shu-Ping Chao ◽  
Chaur-Jong Hu ◽  
Yu-Chun Lo ◽  
Yi-Chen Hsieh

Abstract IntroductionPost-stroke cognitive impairment (PSCI) cannot be neglected because it drastically influences the daily life of patients and their families. However, there are no studies exploring the association between preclinical blood biomarkers of neurodegeneration including plasma amyloid-β (Aβ), tau and brain-derived neurotrophic factor (BDNF) together with the risk of PSCI. The present longitudinal study was to investigate whether these blood biomarkers with imaging markers of cerebral small vessel disease can improve the prediction for PSCI. In addition, we also explored the association between blood biomarkers with the trajectories of PSCI.MethodsAdult patients with first ever acute ischemic stroke were recruited, and the cognitive and functional abilities of these patients were evaluated. Furthermore, blood biomarkers of neurodegeneration including plasma Aβ-40, Aβ-42, total tau, phosphorylated tau 181 (p-tau181), and BDNF levels and image markers of cerebral small vessel disease were measured. Each patient was followed up at 3 and 12 months at the outpatient department.ResultsOf 136 patients, 40 and 50 patients developed PSCI at 3 and 12 months after stroke, respectively. In functional trajectories, 27 patients did not have PSCI at 3 months but did at 12 months. By contrast, the PSCI status of 17 patients at 3 months was reversed at 12 months. Patients with high acute plasma p-tau181 had a significantly lower PSCI risk at 3 months (odds ratio [OR] = 0.62, 95% confidence interval [CI] = 0.40–0.94, p = 0.0243) and 12 months (OR = 0.69, 95% CI = 0.47–0.99, p = 0.0443) after adjustment for covariates and image biomarkers. Discrimination and reclassification statistics indicated that the p-tau181 level can improve discrimination ability for PSCI at 3 and 12 months, respectively. Additionally, the plasma p-tau181 level was the highest in subjects without PSCI followed by those with delayed-onset PSCI and early-onset PSCI with reversal, whereas the lowest plasma p-tau181 level was found among those with persistent PSCI, showing a significant trend test (p = 0.0081).ConclusionsPlasma p-tau181 is a potential biomarker for predicting early- and delayed-onset PSCI. Future studies should incorporate plasma p-tau181 as indicator for timely cognitive intervention in the follow-up of patients with stroke.

2016 ◽  
Vol 127 (9) ◽  
pp. 824-830 ◽  
Author(s):  
Zhenjie Teng ◽  
Yanhong Dong ◽  
Dandan Zhang ◽  
Jin An ◽  
Peiyuan Lv

Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Forrest Lowe ◽  
Souvik Sen ◽  
Hamdi S Adam ◽  
Ryan Demmer ◽  
Bruce A Wasserman ◽  
...  

Background: Prior studies have shown the association between periodontal disease, lacunar strokes and cognitive impairment. Using the Atherosclerosis Risk in Communities (ARIC) cohort study we investigated the relationship between periodontal disease (PD) and the development of MRI verified small vessel disease. Methods: Using the ARIC database data we extracted data for 1143 (mean age 77 years, 76% white, 24% African-American and 45% male) participants assessed for PD (N=800) versus periodontal health (N=343). These participants were assessed for small vessel disease on 3T MRI as measured by the log of white matter hyperintensity volume (WMHV). WMHV were derived from a semiautomated segmentation of FLAIR images. Student t-test was then used to evaluate the relationship between small vessel disease as the log of WMHV in subjects with PD or periodontal health. Based on WMHV the patients were grouped into quartiles and the association of PD with WMHV were tested using the group in periodontal health and lowest quartile of WMHV as the reference groups. Multinomial logistic regression was used to compute crude and adjusted odds ratio (OR) for the higher quartiles of WMHV compared to the reference quartile. Results: There was a significant increase in the presence of small vessel disease measured as log WMHV in the PD cohort as compared to periodontal health cohort with p= 0.023 on Independent Sample t-est. Based on WMHV the subjects were grouped into quartiles 0-6.41, >6.41-11.56, >11.56-21.36 and >21.36 cu mm3). PD was associated with only the highest quartile of WMHV on univariate (crude OR 1.77, 95% CI 1.23-2.56) and multivariable (adjusted OR 1.61, 95% CI 1.06-2.44) analyses. The later was adjusted for age, race, gender, hypertension, diabetes and smoking. Conclusion: Based on this prospective cohort there is data to suggest that PD may be associated with cerebral small vessel disease. Maintaining proper dental health may decrease future risk for the associated lacunar strokes and vascular cognitive impairment.


2009 ◽  
Vol 15 (6) ◽  
pp. 898-905 ◽  
Author(s):  
AIHONG ZHOU ◽  
JIANPING JIA

AbstractControversy surrounds the differences of the cognitive profile between mild cognitive impairment resulting from cerebral small vessel disease (MCI-SVD) and mild cognitive impairment associated with prodromal Alzheimer’s disease (MCI-AD). The aim of this study was to explore and compare the cognitive features of MCI-SVD and MCI-AD. MCI-SVD patients (n = 56), MCI-AD patients (n = 30), and normal control subjects (n = 80) were comprehensively evaluated with neuropsychological tests covering five cognitive domains. The performance was compared between groups. Tests that discriminated between MCI-SVD and MCI-AD were identified. Multiple cognitive domains were impaired in MCI-SVD group, while memory and executive function were mainly impaired in MCI-AD group. Compared with MCI-SVD, MCI-AD patients performed relatively worse on memory tasks, but better on processing speed measures. The AVLT Long Delay Free Recall, Digit Symbol Test, and Stroop Test Part A (performance time) in combination categorized 91.1% of MCI-SVD patients and 86.7% of MCI-AD patients correctly. Current study suggested a nonspecific neuropsychological profile for MCI-SVD and a more specific cognitive pattern in MCI-AD. MCI-AD patients demonstrated greater memory impairment with relatively preserved mental processing speed compared with MCI-SVD patients. Tests tapping these two domains might be potentially useful for differentiating MCI-SVD and MCI-AD patients. (JINS, 2009, 15, 898–905.)


Neurology ◽  
2020 ◽  
Vol 95 (21) ◽  
pp. e2845-e2853 ◽  
Author(s):  
Francis N. Saridin ◽  
Saima Hilal ◽  
Steven G. Villaraza ◽  
Anthonin Reilhac ◽  
Bibek Gyanwali ◽  
...  

ObjectiveTo evaluate the association between brain amyloid β (Aβ) and cerebral small vessel disease (CSVD) markers, as well as their joint effect on cognition, in a memory clinic study.MethodsA total of 186 individuals visiting a memory clinic, diagnosed with no cognitive impairment, cognitive impairment no dementia (CIND), Alzheimer dementia (AD), or vascular dementia were included. Brain Aβ was measured by [11C] Pittsburgh compound B–PET global standardized uptake value ratio (SUVR). CSVD markers including white matter hyperintensities (WMH), lacunes, and cerebral microbleeds (CMBs) were graded on MRI. Cognition was assessed by neuropsychological testing.ResultsAn increase in global SUVR is associated with a decrease in Mini-Mental State Examination (MMSE) in CIND and AD, as well as a decrease in global cognition Z score in AD, independent of age, education, hippocampal volume, and markers of CSVD. A significant interaction between global SUVR and WMH was found in relation to MMSE in CIND (P for interaction: 0.009), with an increase of the effect size of Aβ (β = −6.57 [−9.62 to −3.54], p < 0.001) compared to the model without the interaction term (β = −2.91 [−4.54 to −1.29], p = 0.001).ConclusionHigher global SUVR was associated with worse cognition in CIND and AD, but was augmented by an interaction between global SUVR and WMH only in CIND. This suggests that Aβ and CSVD are independent processes with a possible synergistic effect between Aβ and WMH in individuals with CIND. There was no interaction effect between Aβ and lacunes or CMBs. Therefore, in preclinical phases of AD, WMH should be targeted as a potentially modifiable factor to prevent worsening of cognitive dysfunction.


Diagnostics ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 720
Author(s):  
Larisa A. Dobrynina ◽  
Zukhra Sh. Gadzhieva ◽  
Kamila V. Shamtieva ◽  
Elena I. Kremneva ◽  
Bulat M. Akhmetzyanov ◽  
...  

Introduction: Cerebral small vessel disease (CSVD) is the leading cause of vascular and mixed degenerative cognitive impairment (CI). The variability in the rate of progression of CSVD justifies the search for sensitive predictors of CI. Materials: A total of 74 patients (48 women, average age 60.6 ± 6.9 years) with CSVD and CI of varying severity were examined using 3T MRI. The results of diffusion tensor imaging with a region of interest (ROI) analysis were used to construct a predictive model of CI using binary logistic regression, while phase-contrast magnetic resonance imaging and voxel-based morphometry were used to clarify the conditions for the formation of CI predictors. Results: According to the constructed model, the predictors of CI are axial diffusivity (AD) of the posterior frontal periventricular normal-appearing white matter (pvNAWM), right middle cingulum bundle (CB), and mid-posterior corpus callosum (CC). These predictors showed a significant correlation with the volume of white matter hyperintensity; arterial and venous blood flow, pulsatility index, and aqueduct cerebrospinal fluid (CSF) flow; and surface area of the aqueduct, volume of the lateral ventricles and CSF, and gray matter volume. Conclusion: Disturbances in the AD of pvNAWM, CB, and CC, associated with axonal damage, are a predominant factor in the development of CI in CSVD. The relationship between AD predictors and both blood flow and CSF flow indicates a disturbance in their relationship, while their location near the floor of the lateral ventricle and their link with indicators of internal atrophy, CSF volume, and aqueduct CSF flow suggest the importance of transependymal CSF transudation when these regions are damaged.


Sign in / Sign up

Export Citation Format

Share Document