scholarly journals Step, dip, and bell-shape traveling waves in a (2 + 1)-chemotaxis model with traction and long-range diffusion

Author(s):  
William Kuipou ◽  
Belobe Belobo Didier ◽  
Alidou Mohamadou ◽  
Henri Paul Ekobena Fouda

Abstract In this paper, a new (2 + 1)-dimensional chemotaxis model is introduced, the focus being the understanding of influences of cooperative mechanisms from traction forces, long-range diffusion to chemotaxis on the dynamical characteristics of waves and their transport. Applying the F-expansion method, three families of new traveling wave solutions of bacterial density and chemoattractant concentration are constructed, including step, dip, and bell-shape wave profiles. The dependence of the conditions of existence of our solutions with respect to the model parameters is fully clarified. We found that traction and long-range diffusion slow down the waves and entail the transport of a small number of particles. Surprisingly, the long-range diffusion increases the thickness of the wave but does not alter its magnitude. Amongst families of solutions constructed, dip waves travel faster may be used to explain fast coordination amongst particles. As they support the transport of large amounts of cells, step waves could explain the transport of particles in high dense media. Intensive numerical simulations corroborate with a pretty much accuracy our theoretical analysis, confirming the robustness of our predictions. Traction, long-range diffusion and chemotaxis deeply affect the wave dynamics, they must be taken into account for a better understanding of chemotaxis systems.

2015 ◽  
Vol 11 (3) ◽  
pp. 3134-3138 ◽  
Author(s):  
Mostafa Khater ◽  
Mahmoud A.E. Abdelrahman

In this work, an extended Jacobian elliptic function expansion method is pro-posed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to the Couple Boiti-Leon-Pempinelli System which plays an important role in mathematical physics.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Hasibun Naher ◽  
Farah Aini Abdullah

We construct new exact traveling wave solutions involving free parameters of the nonlinear reaction diffusion equation by using the improved (G′/G)-expansion method. The second-order linear ordinary differential equation with constant coefficients is used in this method. The obtained solutions are presented by the hyperbolic and the trigonometric functions. The solutions become in special functional form when the parameters take particular values. It is important to reveal that our solutions are in good agreement with the existing results.


Open Physics ◽  
2012 ◽  
Vol 10 (3) ◽  
Author(s):  
Bruno Marcos ◽  
Andrea Gabrielli ◽  
Michael Joyce

AbstractSystems of particles interacting with long range interactions present generically ”quasi-stationary states” (QSS), which are approximately time-independent out of equilibrium states. In this proceedings, we explore the generalization of the formation of such QSS and their relaxation from the much studied case of gravity to a generic pair interaction with the asymptotic form of the potential v(r) ∼ 1/r γ with γ > 0 in d dimensions. We compute analytic estimations of the relaxation time calculating the rate of two body collisionality in a virialized system approximated as homogeneous. We show that for γ < (d − 1/2), the collision integral is dominated by the size of the system, while for γ > (d − 1/2), it is dominated by small impact parameters. In addition, the lifetime of QSS increases with the number of particles if γ < d − 1 (i.e. the force is not integrable) and decreases if γ > d − 1. Using numerical simulations we confirm our analytic results. A corollary of our work gives a ”dynamical” classification of interactions: the dynamical properties of the system depend on whether the pair force is integrable or not.


2018 ◽  
Vol 32 (02) ◽  
pp. 1850012 ◽  
Author(s):  
Jiangen Liu ◽  
Yufeng Zhang

This paper gives an analytical study of dynamic behavior of the exact solutions of nonlinear Korteweg–de Vries equation with space–time local fractional derivatives. By using the improved [Formula: see text]-expansion method, the explicit traveling wave solutions including periodic solutions, dark soliton solutions, soliton solutions and soliton-like solutions, are obtained for the first time. They can better help us further understand the physical phenomena and provide a strong basis. Meanwhile, some solutions are presented through 3D-graphs.


Sign in / Sign up

Export Citation Format

Share Document