scholarly journals Late Cretaceous Palynostratigraphy of Subsurface Sediments of Southern Bornu Basin, Nigeria: Implications For Depositional Environments And Palaeoclimate.

Author(s):  
Ekundayo Joseph Adepehin ◽  
Bamidele Samuel Oretade ◽  
Peter Sunday Ola

Abstract Presented in this study are the findings of a cross-examination of the subsurface stratigraphic successions (1500-4600 m) penetrated by the Gaibu-1 well, Bornu Basin, NE Nigeria to understand the palaeoenvironmental settings and the palaeoclimatic conditions of the sediments. Sedimentological/textural description, lithological identification and palynological analysis were carried out using standard laboratory procedures and wireline (gamma-ray and SP) logs. The sediments consist predominantly of sandstone, siltstone, sandy shale, and shale. The sandstones range from fine-coarse, angular to sub-rounded, moderate to poorly sorted, and are texturally immature. Five (5) stratigraphic sub-divisions; the Bima, the Yolde, the Gongila, the Fika (Upper, Middle and Lower members) and the Gombe formations were identified. The palynozonation enabled four distinctive zones: (i) A (1) Triorites africaensis Assemblage Zone, (ii) A (2) Cretacaeiporites scabratus / Odontochitina costata Assemblage Zone, (iii) A (3) Droseridites senonicus Assemblage Zone, A (4) Syncolporites/Milfordia spp. Assemblage Zone. These suggest the well penetrated Cenomanian – Maastrichtian (younger) successions, interpreted to have been deposited in a series of continental to marginal marine environments. The sediments are characterised by palynofloral assemblages that are indicative of a tropical to subtropical climate condition that is warm and humid, which correspond to the late Cretaceous Palmae Province of Africa – Southern America.

Author(s):  
Clara Guatame ◽  
Marco Rincón

AbstractThe Piedemonte Llanero Basin is located on the eastern side of the Eastern Cordillera of the Colombian Andes. It has been the subject of numerous geological studies carried out for the oil sector, mainly. This study presents the coal-petrographical features of 15 coal seams of four geological formations from Late Cretaceous to Middle Miocene (Chipaque formation, Palmichal group, Arcillas del Limbo formation, and San Fernando formation). Analysis of 33 samples indicates enrichment in vitrinite, while liptinite and inertinite concentrations vary according to the stratigraphic position. Reflectance indicates that the coal range gradually decreases from highly volatile bituminous C (Chipaque formation) to subbituminous C (San Fernando formation). The microlithotypes with the highest concentrations are clarite and vitrinertoliptite. Maceral composition and coal facies indicate changes in the depositional conditions of the sequence. The precursor peat from Late Cretaceous to Late Paleocene accumulated under limnic conditions followed by telmatic in Late Eocene–Early Miocene. The coal facies indices show wet conditions in forest swamps with variations in the flooding surface, influxes of brackish water and good tissue preservation. The tectonic conditions along the Piedemonte Llanero basin is evident, from post-rift to foreland basin, evidenced by oxic and anoxic periods reflected in the maceral composition and its morphology. The coal environment corresponds to an estuarine system started in the Chipaque formation evolving to the lacustrine conditions in the San Fernando formation.


2014 ◽  
Vol 19 (3) ◽  
pp. 124-131 ◽  
Author(s):  
Thomas Pottage ◽  
Anjeet Jhutty ◽  
Simon R. Parks ◽  
James T. Walker ◽  
Allan M. Bennett

2021 ◽  
Author(s):  
◽  
James McClintock

<p>The Glenburn Formation of the East Coast of New Zealand is a Late Cretaceous sedimentary formation consisting of alternating layers of sandstone, mudstone and conglomerate. The Glenburn Formation spans a depositional timeframe of over 10 Ma, is over 1000 m thick, is regionally extensive and is possibly present over large areas offshore. For these reasons, it is important to constrain the paleoenvironment of this unit.  Late Cretaceous paleogeographic reconstructions of the East Coast Basin are, however, hampered by a number of factors, including the pervasive Neogene to modern tectonic deformation of the region, the poorly understood nature of the plate tectonic regime during the Cretaceous, and a lack of detailed sedimentological studies of most of the region’s Cretaceous units. Through detailed mapping of the Glenburn Formation, this study aims to improve inferences of regional Cretaceous depositional environments and paleogeography.  Detailed facies based analysis was undertaken on several measured sections in eastern Wairarapa and southern Hawke’s Bay. Information such as bed thickness, grain size and sedimentary structures were recorded in order to identify distinct facies. Although outcrop is locally extensive, separate outcrop localities generally lie in different thrust blocks, which complicates comparisons of individual field areas and prevents construction of the large-scale, three-dimensional geometry of the Glenburn Formation.  Glenburn Formation consists of facies deposited by sediment gravity flows that were primarily turbidity currents and debris flows. Facies observed are consistent with deposition on a prograding submarine fan system. There is significant variation in facies both within and between sections. Several distinct submarine fan architectural components are recognised, such as fan fringes, fan lobes, submarine channels and overbank deposits. Provenance and paleocurrent indicators are consistent with deposition having occurred on several separate submarine fans, and an integrated regional paleogeographic reconstruction suggests that deposition most likely occurred in a fossil trench following the mid-Cretaceous cessation of subduction along the Pacific-facing margin of Gondwana.</p>


Author(s):  
Onyewuchi, Chinedu Vin ◽  
Minapuye, I. Odigi

Facies analysis and depositional environment identification of the Vin field was evaluated through the integration and comparison of results from wireline logs, core analysis, seismic data, ditch cutting samples and petrophysical parameters. Well log suites from 22 wells comprising gamma ray, resistivity, neutron, density, seismic data, and ditch cutting samples were obtained and analyzed. Prediction of depositional environment was made through the usage of wireline log shapes of facies combined with result from cores and ditch cuttings sample description. The aims of this study were to identify the facies and depositional environments of the D-3 reservoir sand in the Vin field. Two sets of correlations were made on the E-W trend to validate the reservoir top and base while the isopach map was used to establish the reservoir continuity. Facies analysis was carried out to identify the various depositional environments. The result showed that the reservoir is an elongate , four way dip closed roll over anticline associated with an E-W trending growth fault and contains two structural high separated by a saddle. The offshore bar unit is an elongate sand body with length: width ratio of >3:1 and is aligned parallel to the coast-line. Analysis of the gamma ray logs indicated that four log facies were recognized in all the wells used for the study. These include: Funnel-shaped (coarsening upward sequences), bell-shaped or fining upward sequences, the bow shape and irregular shape. Based on these categories of facies, the depositional environments were interpreted as deltaic distributaries, regressive barrier bars, reworked offshore bars and shallow marine. Analysis of the wireline logs and their core/ditch cuttings description has led to the conclusion that the reservoir sandstones of the Agbada Formation in the Vin field of the eastern Niger Delta is predominantly marine deltaic sequence, strongly influenced by clastic output from the Niger Delta. Deposition occurred in a variety of littoral and neritic environment ranging from barrier sand complex to fully marine outer shelf mudstones.


Author(s):  
Xavier Orriols Brunetti ◽  
Suzanne Cawood ◽  
Matthew Gaunt ◽  
Wael Saab ◽  
Paul Serhal ◽  
...  

Background: The first successful livebirth using warmed oocytes (vitrified by the GAVITM system) is reported in this paper. Embryologists throughout the world have vitrified oocytes using a manual technique which is susceptible to error and variation. In this era of automated laboratory procedures, vitrification was made semi-automatic by using the GAVITM system. Case Presentation: Donor oocytes were initially vitrified using the GAVITM system. They remained in the clinic’s oocyte bank until they were allocated to the patient. Donor oocytes were warmed as per Genea BIOMEDX protocol and inseminated to create embryos. Resulting embryos for the 42-year-old patient were cultured to the blastocyst stage, biopsied to perform PGT-A, using next generation sequencing and subsequently vitrified. The patient underwent a single euploid transfer in a frozen embryo transfer cycle which resulted in a healthy livebirth. Conclusion: The introduction of a semi-automated system should minimize the risk to the oocytes, standardize the procedure worldwide and potentially reduce the laboratory time taken by the embryologists. This case report demonstrates the safety of the technology used for vitrification, but larger randomized studies need to be performed to demonstrate the safety and efficacy of newer technologies like the GAVITM system before adopting it as a standard laboratory procedure.


2017 ◽  
Vol 8 ◽  
Author(s):  
Lena Wiegmann ◽  
Diane A. de Zélicourt ◽  
Oliver Speer ◽  
Alissa Muller ◽  
Jeroen S. Goede ◽  
...  

2020 ◽  
pp. SP509-2019-148
Author(s):  
Andrew J. Barnett ◽  
Lucy Fu ◽  
Tolu Rapasi ◽  
Cinzia Scotellaro ◽  
Jaydip Guha ◽  
...  

AbstractThe lacustrine Itapema Formation in the Santos Basin locally comprises 102 m thick clinoforms identified seismically and corroborated by several well penetrations. Individual clinoforms, as proven by well penetrations, are composed of 102 m thick successions of basinward-dipping molluscan grainstones and rudstones. Manual dip picking of borehole images shows upward-increasing dips consistent with seismic geometries and a predominance of longshore sediment transport. Clinoforms are bound at their top and base by strata with significantly lower dips recognizable on both seismic and borehole images. Elevated gamma-ray log responses together with sidewall core samples indicate that these intervals correspond to more argillaceous facies which are interpreted as lake flooding events. While the existence of bona fide clinoforms is demonstrated by a range of subsurface data, their precise origin remains enigmatic. The majority of the bivalve genera that make up the grain-supported carbonates appear to be infaunal or semi-infaunal. As such the clinoforms represent large bars produced through the re-working of bivalves from lower-energy depositional environments by shore-parallel currents.


Sign in / Sign up

Export Citation Format

Share Document