scholarly journals Isothermal Recombinase Polymerase Amplification-lateral Flow Detection of SARS-CoV-2, the Etiological Agent of COVID-19

2020 ◽  
Author(s):  
Thomas R Shelite ◽  
Ashanti C Uscanga-Palomeque ◽  
Alejandro Castellanos ◽  
Peter C Melby ◽  
Bruno L Travi

Abstract The rapid detection of novel pathogens necessitates the development of easy-to-use diagnostic tests that can be readily adapted and utilized in both clinical laboratories and field settings. In December of 2019, novel coronavirus, SARS-CoV-2 (2019-nCoV), was isolated from a cluster of pneumonia patients in the Chinese city of Wuhan. The virus rapidly spread throughout the world and the first fatal cases of COVID-19 in the United States occurred in late February. The lack of testing and delay in diagnosis has facilitated the spread of this novel virus. Development of point-of-care diagnostic assays that can be performed in rural or decentralized health care centers to expand testing capacity is needed. We developed a qualitative test based on recombinase-polymerase-amplification coupled with lateral flow reading (RPA-LF) for rapid detection of SARS-CoV-2. The RPA-LF detected SARS-CoV-2 with a limit of detection of 35.4 viral nucleocapsid (N) gene copies/µL. Additionally, the RPA-LF was able to detect 0.25-2.5 copies/µL of SARS-CoV-2 N gene containing plasmid. We evaluated 37 clinical samples using CDC’s N3, N1 and N2 RT-real-time PCR assays for SARS-CoV-2 as reference test. We found a 100% concordance between RPA-LF and RT-qPCR reference test as determined by 18/18 positive and 19/19 negative samples. All positive samples had Ct values between 19-37 by RT-qPCR. The RPA-LF primers and probe did not cross react with other relevant betacoronaviruses such as SARS and MERS. This is the first isothermal amplification test paired with lateral flow developed for qualitative detection of COVID-19 allowing rapid viral detection and with prospective applicability in resource limited and decentralized laboratories.

2020 ◽  
Author(s):  
Thomas R Shelite ◽  
Ashanti C Uscanga-Palomeque ◽  
Alejandro Castellanos ◽  
Peter C Melby ◽  
Bruno L Travi

Abstract The rapid detection of novel pathogens necessitates the development of easy-to-use diagnostic tests that can be readily adapted and utilized in both clinical laboratories and field settings. In December of 2019, novel coronavirus, SARS-CoV-2 (2019-nCoV), was isolated from a cluster of pneumonia patients in the Chinese city of Wuhan. The virus rapidly spread throughout the world and the first fatal cases of COVID-19 in the United States occurred in late February. The lack of testing and delay in diagnosis has facilitated the spread of this novel virus. Development of point-of-care diagnostic assays that can be performed in rural or decentralized health care centers to expand testing capacity is needed. We developed a qualitative test based on recombinase-polymerase-amplification coupled with lateral flow reading (RPA-LF) for rapid detection of SARS-CoV-2. The RPA-LF detected SARS-CoV-2 with a limit of detection of 35.4 viral nucleocapsid (N) gene copies/µL. Additionally, the RPA-LF was able to detect 0.25-2.5 copies/µL of SARS-CoV-2 N gene containing plasmid. We evaluated 37 clinical samples using CDC’s N3, N1 and N2 RT-real-time PCR assays for SARS-CoV-2 as reference test. We found a 100% concordance between RPA-LF and RT-qPCR reference test as determined by 18/18 positive and 19/19 negative samples. All positive samples had Ct values between 19-37 by RT-qPCR. The RPA-LF primers and probe did not cross react with other relevant betacoronaviruses such as SARS and MERS. This is the first isothermal amplification test paired with lateral flow developed for qualitative detection of COVID-19 allowing rapid viral detection and with prospective applicability in resource limited and decentralized laboratories.


2019 ◽  
Author(s):  
Yao Peng ◽  
Zheng Xiao ◽  
Biao Kan ◽  
Wei Li ◽  
Wen Zhang ◽  
...  

AbstractMelioidosis is a severe infectious disease caused by gram-negative, facultative intracellular pathogen Burkholderia pseudomallei (B. pseudomallei). Although cases are increasing reported from other parts of the world, it is an illness of tropical and subtropical climates primarily found in southeast Asia and northern Australia. Because of a 40% mortality rate, this life-threatening disease poses a public health risk in endemic area. Early detection of B. pseudomallei infection benefits greatly to implement effective treatment timely, which is vital for prognosis of a melioidosis patient. In this study, a novel isothermal recombinase polymerase amplification combined with lateral flow dipstick (LF-RPA) assay was established for rapid detection of B.pseudomallei. A set of probe and primers targeting orf2 gene of B. pseudomallei were generated and parameters for the LF-RPA assay were optimized. Result can be easy visualized in 30 minutes with the limit of detection (LoD) as low as 20 femtogram (ca. 25.6 copies) of B. pseudomallei genomic DNA. The assay is highly specific as no cross amplification was observed with 35 non-B. pseudomallei pathogens. Isolates (N=19) from patients of Hainan province of China were retrospectively confirmed by the newly developed method. LoD for B. pseudomallei spiked soil and blood samples were 2.1×103 CFU/g and 4.2×103 CFU/ml respectively. Sensitivity of the LF-RPA assay was comparable to TaqMan Real-Time PCR, however, the LF-RPA assay exhibited a better tolerant to inhibitors in blood than the later. Our results showed that the LF-RPA assay is an alternative to existing PCR-based methods for detection of B. pseudomallei with a potentiality of early accurate diagnosis of melioidosis at point of care or in-field use.


2020 ◽  
Author(s):  
Yangyang Sun ◽  
Lei Yu ◽  
Chengxi Liu ◽  
Wei Chen ◽  
Dechang Li ◽  
...  

Abstract Background: COVID-19 has spread rapidly around the world, affecting almost every person. When lifting certain mandatory measures for an economic restart, robust surveillance must be established and implemented, with nucleic acid detection for SARS-CoV-2 as an essential component. Methods: We designed RT-RPA (Reverse Transcription and Recombinase Polymerase Isothermal Amplification) primers of RdRp gene and N gene according to the SARS-CoV-2 gene sequence. We optimized the components in the reaction so that the detection process could be carried out in one tube. The specificity was demonstrated through detecting nucleic acid samples from seven human coronaviruses. Clinical samples were used to validate the platform and all results were compared to rRT-PCR. RNA standards diluted by different gradients were used to demonstrate the limit of detection. Furthermore, we have developed a lateral flow assay based on OR-DETECTR for the detection of COVID-19. Results: We have developed a o ne-tube detection platform based on R T- R PA and DNA Endonuclease-Targeted CRISPR Trans Reporter ( DETECTR ) technology, termed OR-DETECTR, to detect SARS-CoV-2. The detection process is completed in one tube, and the time is 50min. The method can specifically detect SARS-CoV-2 from seven human coronaviruses with a low detection limit of 2.5 copies/µl input. Results from six SARS-CoV-2 patient samples, eight samples from patients with fever but no SARS-CoV-2 infection, and one mixed sample from 40 negative controls showed that OR-DETECTR is 100% consistent with rRT-PCR. Furthermore, we have developed a lateral flow assay based on OR-DETECTR for the detection of COVID-19. Conclusions: OR-DETECTR detection platform is rapid, accurate, tube closed, easy-to-operate, and free of large instruments for COVID-19 detection.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Pei Huang ◽  
Yue Yu ◽  
Xianyong Meng ◽  
Tiecheng Wang ◽  
Feihu Yan ◽  
...  

Abstract Background Canine distemper virus (CDV) is an enveloped negative-strand RNA virus that exhibits a high mutation rate and continuously expands the range of hosts. Notably, CDV has infected giant panda with spill over from viral reservoirs in canines. Giant pandas (Ailuropoda melanoleuca), especially captive pandas, are known to be susceptible to natural infection with CDV. The high fatality rate of CDV poses a serious threat to the safety of the giant panda population. However, vaccines or drugs for canine distemper in giant pandas have not been developed to date. Therefore, a rapid test that can achieve accurate onsite detection of CDV is important to enable the timely implementation of control measures. In this study, we established a nucleic acid visualization assay for targeting the CDV N gene by using combines reverse transcription recombinase polymerase amplification with a closed vertical flow visualization strip (RT-RPA-VF). Results The RT-RPA-VF assay does not require sophisticated equipment, and it was determined to provide rapid detection at 35 °C for 30 min, while the limit of detection was 5 × 101 copies/μl RNA transcripts and 100.5 TCID50 ml− 1 viruses. The results showed that the assay was high specific to CDV and had no cross-reactivity with other viruses infecting the giant panda. Compared with RT-qPCR, RT-RPA-VF assay had a sensitivity of 100% and a specificity of 100% in 29 clinical samples. The coincidence rate between RT-RPA-VF and RT-qPCR was 100% (kappa = 1), indicating that the RT-RPA-VF assay possessed good diagnostic performance on clinical samples. Conclusions The RT-RPA-VF provides a novel alternative for the simple, sensitive, and specific identification of CDV and showed great potential for point of care diagnostics for captive and wild giant panda.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248536
Author(s):  
Sitthichai Kanokudom ◽  
Thachaporn Assawakongkarat ◽  
Yukihiro Akeda ◽  
Panan Ratthawongjirakul ◽  
Rungtip Chuanchuen ◽  
...  

The emergence and dissemination of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli is a global health issue. Food-producing animals, including pigs, are significant reservoirs of antimicrobial resistance (AMR), which can be transmitted to humans. Thus, the rapid detection of ESBLs is required for efficient epidemiological control and treatment. In this study, multiplex recombinase polymerase amplification (RPA) combined with a single-stranded tag hybridization chromatographic printed-array strip (STH-PAS), as a lateral flow strip assay (LFA), was established for the rapid and simultaneous detection of multiple bla genes in a single reaction. Visible blue lines, indicating the presence of the blaCTX-M, blaSHV, and blaOXA genes, were observed within 10 min by the naked eye. The limit of detection of all three genes was 2.5 ng/25 μL, and no cross-reactivity with seven commensal aerobic bacteria was observed. A total of 93.9% (92/98) and 96% (48/50) of the E. coli isolates from pork meat and fecal samples, respectively, expressed an ESBL-producing phenotype. Nucleotide sequencing of the PCR amplicons showed that blaCTX-M was the most prevalent type (91.3–95.83%), of which the main form was blaCTX-M-55. The sensitivity and specificity of the RPA-LFA were 99.2% and 100%, respectively, and were in almost perfect agreement (κ = 0.949–1.000) with the results from PCR sequencing. Thus, the RPA-LFA is a promising tool for rapid and equipment-free ESBL detection and may facilitate clinical diagnosis in human and veterinary medicine, as well as AMR monitoring and surveillance.


Author(s):  
Yu-Zhong Zheng ◽  
Jiang-Tao Chen ◽  
Jian Li ◽  
Xian-Jing Wu ◽  
Jin-Zhou Wen ◽  
...  

BackgroundThe emerging Coronavirus Disease-2019 (COVID-19) has challenged the public health globally. With the increasing requirement of detection for SARS-CoV-2 outside of the laboratory setting, a rapid and precise Point of Care Test (POCT) is urgently needed.MethodsTargeting the nucleocapsid (N) gene of SARS-CoV-2, specific primers, and probes for reverse transcription recombinase-aided amplification coupled with lateral flow dipstick (RT-RAA/LFD) platform were designed. For specificity evaluation, it was tested with human coronaviruses, human influenza A virus, influenza B viruses, respiratory syncytial virus, and hepatitis B virus, respectively. For sensitivity assay, it was estimated by templates of recombinant plasmid and pseudovirus of SARS-CoV-2 RNA. For clinical assessment, 100 clinical samples (13 positive and 87 negatives for SARS-CoV-2) were tested via quantitative reverse transcription PCR (RT-qPCR) and RT-RAA/LFD, respectively.ResultsThe limit of detection was 1 copies/μl in RT-RAA/LFD assay, which could be conducted within 30 min at 39°C, without any cross-reaction with other human coronaviruses and clinical respiratory pathogens. Compared with RT-qPCR, the established POCT assay offered 100% specificity and 100% sensitivity in the detection of clinical samples.ConclusionThis work provides a convenient POCT tool for rapid screening, diagnosis, and monitoring of suspected patients in SARS-CoV-2 endemic areas.


Author(s):  
Carla Eiras

Interleukin-6 (IL-6) is a multifunctional cytokine and high bloodstream levels of which have been associated with severe inflammatory diseases, such as dengue fever, sepsis, various cancers, and visceral leishmaniasis (VL). Rapid tests for the quantification of IL-6 would be of great assistance for the bedside diagnosis and treatment of diseases such as VL. We have developed a lateral flow assay (LFA) for rapid and colorimetric IL-6 detection, consisting of anti-IL-6 antibodies conjugated to gold nanoparticles (AuNPs). The optimal concentration of anti-IL-6 used in the conjugate was determined to be 800.0 μg/mL, based on an aggregation assay using LFA. A linear relationship between IL-6 standard concentration and color intensity was observed after 20 min, with a linear range between 1.25 ng/mL and 9,000 ng/mL. The limit of detection for this method was estimated a t0.38 ng/mL. The concentration of IL-6 in five patients with severe VL was measured using LFA, and the results were consistent with those obtained using the cytometric bead array (CBA) method. A thorough analysis of the LFA membranes’ surface morphology, before and after sample contact, was performed using atomic force microscopy (AFM).The prototype described here is still being tested and improved, but this LFA will undoubtedly be of great help in the clinical quantification of IL-6.


Author(s):  
Carla Eiras

Interleukin-6 (IL-6) is a multifunctional cytokine and high bloodstream levels of which have been associated with severe inflammatory diseases, such as dengue fever, sepsis, various cancers, and visceral leishmaniasis (VL). Rapid tests for the quantification of IL-6 would be of great assistance for the bedside diagnosis and treatment of diseases such as VL. We have developed a lateral flow assay (LFA) for rapid and colorimetric IL-6 detection, consisting of anti-IL-6 antibodies conjugated to gold nanoparticles (AuNPs). The optimal concentration of anti-IL-6 used in the conjugate was determined to be 800.0 μg/mL, based on an aggregation assay using LFA. A linear relationship between IL-6 standard concentration and color intensity was observed after 20 min, with a linear range between 1.25 ng/mL and 9,000 ng/mL. The limit of detection for this method was estimated at a t0.38 ng/mL. The concentration of IL-6 in five patients with severe VL was measured using LFA, and the results were consistent with those obtained using the cytometric bead array (CBA) method. A thorough analysis of the LFA membranes’ surface morphology, before and after sample contact, was performed using atomic force microscopy (AFM). The prototype described here is still being tested and improved, but this LFA will undoubtedly be of great help in the clinical quantification of IL-6.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shan Wei ◽  
Esther Kohl ◽  
Alexandre Djandji ◽  
Stephanie Morgan ◽  
Susan Whittier ◽  
...  

AbstractThe COVID-19 pandemic has resulted in an urgent need for a rapid, point of care diagnostic testing that could be rapidly scaled on a worldwide level. We developed and tested a highly sensitive and robust assay based on reverse transcription loop mediated isothermal amplification (RT-LAMP) that uses readily available reagents and a simple heat block using contrived spike-in and actual clinical samples. RT-LAMP testing on RNA-spiked samples showed a limit of detection (LoD) of 2.5 copies/μl of viral transport media. RT-LAMP testing directly on clinical nasopharyngeal swab samples in viral transport media had an 85% positive percentage agreement (PPA) (17/20), and 100% negative percentage agreement (NPV) and delivered results in 30 min. Our optimized RT-LAMP based testing method is a scalable system that is sufficiently sensitive and robust to test for SARS-CoV-2 directly on clinical nasopharyngeal swab samples in viral transport media in 30 min at the point of care without the need for specialized or proprietary equipment or reagents. This cost-effective and efficient one-step testing method can be readily available for COVID-19 testing world-wide, especially in resource poor settings.


Sign in / Sign up

Export Citation Format

Share Document