Utilization of waste engine oil for expanded clay aggregate production and assessment of its influence on lightweight concrete properties

Author(s):  
Claudia Burbano-Garcia ◽  
Ana Hurtado ◽  
Yimmy Fernando Silva ◽  
Silvio Delvasto ◽  
Gerardo Araya-Letelier
TAPPI Journal ◽  
2018 ◽  
Vol 17 (03) ◽  
pp. 145-153 ◽  
Author(s):  
Chengua Yu ◽  
Feng Wang ◽  
Shiyu Fu ◽  
Lucian Lucia

A very low-density oil-absorbing hydrophobic material was fabricated from cellulose nanofiber aerogels–coated silane substances. Nanocellulose aerogels (NCA) superabsorbents were prepared by freeze drying cellulose nanofibril dispersions at 0.2%, 0.5%, 0.8%, 1.0%, and 1.5% w/w. The NCA were hydrophobically modified with methyltrimethoxysilane. The surface morphology and wettability were characterized by scanning electron microscopy and static contact angle. The aerogels displayed an ultralow density (2.0–16.7 mg·cm-3), high porosity (99.9%–98.9%), and superhydrophobicity as evidenced by the contact angle of ~150° that enabled the aerogels to effectively absorb oil from an oil/water mixture. The absorption capacities of hydrophobic nanocellulose aerogels for waste engine oil and olive oil could be up to 140 g·g-1 and 179.1 g·g-1, respectively.


2021 ◽  
Vol 313 ◽  
pp. 125411
Author(s):  
Anqi Chen ◽  
Ziang Hu ◽  
Mingliang Li ◽  
Tao Bai ◽  
Guangjian Xie ◽  
...  

2018 ◽  
Vol 8 (7) ◽  
pp. 1194 ◽  
Author(s):  
Touqeer Shoukat ◽  
Pyeong Jun Yoo

The pavement structure tends to shrink under low temperature conditions and cracks will appear upon crossing threshold binder stiffness. Decreasing the binder viscosity at such low temperatures, by introducing additional oil fraction (aromatics and saturates) in asphalt colloidal systems, may result in improved resistance to thermal cracking. A single multi-grade engine oil (5W30) was used in this study to analyze the rheological properties imparted to binders. Rotational Viscosity (RV) test revealed that after Rolling Thin Film Oven (RTFO) aging, fresh oil and waste oil have a similar effect on decreasing the viscosity of binder and construction temperatures, reducing them by 5~8 °C. Fourier Transform Infrared Spectroscopy (FTIR) test results showed an abrupt increase of carbonyl concertation when fresh engine oil was used for rejuvenation while waste engine oil was less susceptible to oxidative aging. Dynamic analysis of modified binders proved that engine oil has better thermal cracking resistance but relaxation ability of binders and rutting resistance was impaired. Filtered waste engine oil resulted in a 35% decrement in the stiffness of binder compared to virgin asphalt after short term aging but upper Performance Grade (PG) was compromised by 1~3 °C with 2.5% oil inclusion. Unfiltered waste engine oil proved to have the least overall performance compared to fresh and filtered waste engine oil.


2017 ◽  
Vol 166 ◽  
pp. 1010-1019 ◽  
Author(s):  
Navid Zandi-Atashbar ◽  
Ali Asghar Ensafi ◽  
Amir Hooshmand Ahoor

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1242
Author(s):  
Qingyao Yu ◽  
Fuqiang Tian ◽  
Yijun Cao ◽  
Guixia Fan ◽  
Haiqing Hao ◽  
...  

Collectors commonly have synergetic effects in ores flotation. In this work, a waste engine oil (WEO) was introduced as a collector to an ilmenite flotation system with sodium oleate (NaOL). The results show that the floatability of ilmenite was significantly improved by using WEO and NaOL as a combined collector. The recovery of ilmenite was enhanced from 71.26% (only NaOL) to 93.89% (WEO/NaOL combined collector) at the pH of 6.72. The optimum molar ratio of NaOL to WEO was about 2.08 to 1. The WEO and NaOL also have synergetic effects for the collection of ilmenite, because to obtain the ilmenite recovery of 53.96%, the dosage of 45 mg/L NaOL is equal to 38.56 mg/L WEO/NaOL combined collector (30 mg/L NaOL + 8.56 mg/L WEO). In other words, 15 mg/L of NaOL can be replaced by 8.56 mg/L of WEO. It is an effective way to reduce the dosage of the collector and reuse WEO. Therefore, it is a highly valuable and environmentally friendly approach for WEO reuse. WEO mainly consists of oxygen functional groups, aromatics, and long-chain hydrocarbons, especially for the RCONH2 and RCOOH, thereby forming a strong interaction on the ilmenite surface. The adsorption mechanism of waste engine oil and sodium oleate on the ilmenite surface is mainly contributed by chemical adsorption. Therefore, WEO exhibits superior synergistic power with NaOL as a combined collector. Herein, this work provided an effective collector for ilmenite flotation and a feasible approach for reducing NaOL dosage and recycling WEO.


2021 ◽  
Author(s):  
Prashant Sharma ◽  
Bhupendra Gupta ◽  
Mukesh Pandey

Abstract Present study concerns with the production of H2 rich product gas by thermochemical energy conversion having biomass gasification as a route for the four biomasses i.e., Kasai Saw Dust, Lemon Grass, Wheat Straw and Pigeon Pea Seed Coat. The biomasses are from the family of woody biomass, grasses, agricultural waste and food process industry wastes. Waste engine oil as an additive is used, which also acts as a binder. Air gasification and Air-steam gasification is applied and compared for product gas composition, hydrogen yield and other performance parameters like lower heating value, energy yield. Product gas constituents, hydrogen production is examined with different steam to biomass ratio (S/B ratio) and equivalence ratio. The equivalence ratio varies from 0.20–0.40 and the steam to biomass ratio varies between 0–4. The waster engine oil is mixed with the biomasses with different percentage of 5 and 10 wt%. For enhancement of feedstock quality palletization process is applied. The H2 yield is greatly affected by the equivalence ratio. Results show maximum H2 production and higher calorific value of product gas at an air to fuel of 0.26 for all the biomass pallets. Also, the S/B ratio observed as important aspect for hydrogen enrichment. Hydrogen yield is maximum at 2.4 steam to biomass ratio. This study considers the rarely studied Indian biomasses with waste engine oil as an additive for hydrogen-rich product gas production and will be beneficial for small scale hydrogen-rich syngas production considering the central Indian region originated biomasses. Statement of Novelty (SON): Research work belongs to eco-friendly use of rarely studied Indian biomass pallets. Equivalence air to fuel ratio (E/R ratio), steam to biomass ratio (S/B ratio) and waste engine oil as additive have been considered to upgrade H2 content and Calorific Value (CV) of the product gas. Novelty of work include use of waste engine oil as additive to make biomass pallets.


2017 ◽  
Vol 15 (7) ◽  
pp. 1453-1466 ◽  
Author(s):  
S. Bhurgri ◽  
F. N. Talpur ◽  
S. M. Nizamani ◽  
H. I. Afridi ◽  
M. A. Surhio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document