scholarly journals The Effect of Temperature Variance with Different Surface Shapes on Efficiency of Silicon Thin Film Solar Cell

Author(s):  
Khalil Mahmoud ElKhamisy ◽  
Hamdy AbdElhamid ◽  
salah Elagooz ◽  
El-Sayed El-Rabaie

Abstract In this work, the temperature effects on the PV’s electrical and optical parameters of different surface gratings are studied. A 3D simulation is introduced for studying the PV’s electrical parameters such as short circuit current, open circuit voltage and efficiency at different levels of temperature with and without surface’s gratings. We observed that the efficiency is increased for PV of surface grating by about 4.87% compared to the free grating surface’s PV. The efficiency of the PV efficiency is degraded as we increased the temperature above 300K. The solar cell efficiency of gratings free is aggressively degraded compared to the solar cell that includes gratings by about 4.89% at 360K. The electrical parameters such as the open circuit voltage and short circuit current are enhanced compared to the PV of surface grating free. Also, we observed that the triangle grating geometry of dimensions about 10×10 nm produced a higher efficiency compared to the other PV of other grating geometries of same dimensions.

2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Sivakumar Parthasarathy ◽  
P. Neelamegam ◽  
P. Thilakan ◽  
N. Tamilselvan

Multicrystalline silicon solar cell and its module with 18 cells connected in series were mounted on an inclined rack tilted 12° South positioned at latitude of 12.0107° and longitude of 79.856°. Corresponding solar irradiance was measured using an optical Pyranometer. Measured irradiance, open circuit voltage (), and short circuit current () values were analyzed. values of both the cell and module were found saturated at above the critical value of illuminations which were different from each other. The integrated daily efficiency for the cell and module were ~10.25% and ~9.39%, respectively, that were less than their respective standard test condition’s value. The reasons for this drop in efficiencies were investigated and reported.


2014 ◽  
Vol 633-634 ◽  
pp. 509-512
Author(s):  
Ping Yang ◽  
Xiang Bo Zeng ◽  
Xiao Dong Zhang ◽  
Zhan Guo Wang

Silicon film as a surface passivation layer is reported to reduce surface recombination on silicon nanowires (SiNWs) and thus enable to improve SiNW solar cell (SC) performance. A question yet to be answered regards the link between the silicon film assets and the solar cell performances. We investigated the effect of the properties of silicon films on the SiNWs SC performances by adjusting hydrogen dilution. Our results showed that the open-circuit voltage (Voc) and short-circuit current density (Jsc) of SiNWs SC increase until hydrogen dilution 10 and then decrease. An open-circuit voltage of 0.397 V and short-circuit current density of 18.42 mA/cm2 are achieved at optimized hydrogen dilution. Based on the analysis of silicon film properties we proposed that the increase of defect density with hydrogen dilution was the main cause for the deterioration of SiNWs SC performance.


2014 ◽  
Vol 1070-1072 ◽  
pp. 616-619
Author(s):  
Wen Bo Xiao ◽  
Jin Dai ◽  
Guo Hua Tu ◽  
Hua Ming Wu

The dye-sensitized solar cell performances influenced by radiant intensity and illuminated area in concentrating photovoltaic system are investigated experimentally and discussed theoretically. The results show that, under the same irradiated cells area, the short-circuit current is linearly increasing with the radiant intensity and the open-circuit voltage follows a logarithmic function of the radiant intensity. And, it is turned out that the short-circuit current and open-circuit voltage are obviously enhanced by increasing the illuminated cells surface area at the same radiant intensity. However, that growth trends will decline with an increase of the illuminated area. The reason is more defects involved in the process of increasing illumination area. All results can be interpreted using an equivalent circuit of a single diode model. A good agreement can be observed from the fitting curves. It is of great significance for current photovoltaic research.


2007 ◽  
Vol 280-283 ◽  
pp. 1161-1162 ◽  
Author(s):  
Zhi Jian Wan ◽  
Yong Huang ◽  
Hou Xing Zhang ◽  
Hai Feng Li

Polycrystalline silicon layers were grown on AlN ceramic substrates in a rapid thermal chemical vapor deposition system at high temperature (~1150°C). Larger columnar grains, > 5µm in size, were obtained by the zone melting recrystallization (ZMR) technique. The p-n junction is formed by a phosphorous diffusion process to make a solar cell. Solar cell devices based on this Si layer result possess an open-circuit voltage of about 0.17V and a short-circuit current of about 6.6mA/cm2.


2011 ◽  
Vol 347-353 ◽  
pp. 3666-3669
Author(s):  
Ming Biao Li ◽  
Li Bin Shi

The AMPS-ID program is used to investigate optical and electrical properties of the solar cell of a-SiC:H/a-Si1-xGex:H/a-Si:H thin films. The short circuit current density, open circuit voltage, fill factor and conversion efficiency of the solar cell are investigated. For x=0.1, the conversion efficiency of the solar cell achieve maximum 9.19 % at the a-Si1-xGex:H thickness of 340 nm.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Sheng-Hui Chen ◽  
Ting-Wei Chang ◽  
Hsuan-Wen Wang

The absorption coefficient at 1.4 eV is divided by the value at 0.9 eV to obtain the factor used to judge the quality of μc-Si:H. PV device performance can be predicted by multiplyingVocwithIscwhen using this layer as an intrinsic layer. The results show a good relationship between the quality factor and the product of open-circuit voltage and short-circuit current. However, the final efficiency is influenced by the identities of the interface in the multilayer structure.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Hwen-Fen Hong ◽  
Tsung-Shiew Huang ◽  
Wu-Yih Uen ◽  
Yen-Yeh Chen

We performed accelerated tests on sealed and nonsealed InGaP/InGaAs/Ge triple-junction (TJ) solar cells in a complex high temperature and high humidity environment and investigated the electrical properties over time. The degradation of energy conversion efficiency in nonsealed cells was found to be more serious than that in sealed cells. The short-circuit current (ISC), open-circuit voltage (VOC), and fill factor (FF) of sealed cells changed very slightly, though the conversion efficiency decreased 3.6% over 500 h of exposure. This decrease of conversion efficiency was suggested to be due to the deterioration of silicone encapsulant. TheISC,VOC, and FF of nonsealed cells decreased with increasing exposure time. By EL and SEM analysis, the root causes of degradation can be attributed to the damage and cracks near the edge of cells induced by the moisture ingress. It resulted in shunt paths that lead to a deterioration of the conversion efficiency of solar cell by increasing the leakage current, as well as decreasing open-circuit voltage and fill factor of nonsealed solar cells.


2012 ◽  
Vol 260-261 ◽  
pp. 154-162
Author(s):  
S. Tobbeche ◽  
M.N. Kateb

In this work, we present the simulation results of the technological parameters and the electrical characteristics of a crystalline silicon n+pp+ solar cell, using two-dimension (2D) software, namely TCAD Silvaco (Technology Computer Aided Design). TCAD Silvaco Athena is used to simulate various stages of the technology manufacturing, while TCAD Silvaco Atlas is used for the simulation of the electrical characteristics and the spectral response of the solar cell. The J-V characteristics and the external quantum efficiency (EQE) are simulated under AM 1.5 illumination. The conversion efficiency(η)of 16.06% is reached and the other characteristic parameters are simulated: the open circuit voltage (Voc) is of 0.63 V, the short circuit current density (Jsc) equals 30.54 mA/cm² and the form factor (FF) is of 0.83 for the n+pp+ solar cell with a silicon nitride antireflection layer (Si3N4). In order to highlight the importance of the back surface field (BSF), a comparison between two cells, one without BSF (structure n+p), the other with one BSF (structure n+pp+), was made. By creating a BSF on the rear face of the cell the short circuit current density increases from 28.55 to 30.54 mA/cm2, the open circuit voltage from 0.6 to 0.63 V and the conversion efficiency from 14.19 to 16.06%. A clear improvement of the spectral response is obtained in wavelengths ranging from 0.65 to 1.1 µm for the solar cell with BSF.


Sign in / Sign up

Export Citation Format

Share Document