scholarly journals Silicon Mediated Changes in Growth and Photosynthetic Pigment of Wheat Plant Under Salt Stress

Author(s):  
Pooja Singh ◽  
Vikram Kumar ◽  
Jyoti Sharma ◽  
Asha Sharma

Abstract Purpose Salinity is a most important environmental stress which adversely affects the crop production and yield. In recent years, Silicon (Si) is gaining an increased attention in the field of stress management. Wheat (Triticum aestivum L.) is one of the moderately prone crops to different abiotic stresses which instantly damage the crop yield under stress condition. This work demonstrates the positive impact of Si on growth and photosynthetic pigments in wheat under saline conditions.Methods In this research work, two genotypes of wheat i.e. KRL 210 and WH 1105, were grown-up in soil under different salt stress concentration. There were different treatments under which they grown included T0= Control without salt stress (0 dS m-1) , T1= Sodium silicate without salt stress (2 mM) , T2= Control with salt stress (4 dS m-1) T3= Control with salt stress (8 dS m-1) T4= Control with salt stress (12 dS m-1) T5= Sodium silicate with salt stress (4dS m -1 + 2mM Si) T6= Sodium silicate with salt stress (8dS m-1 +2 mM Si) T7= Sodium silicate with salt stress (12dS m-1 +2mM Si). At vegetative stage, both the wheat genotypes were compared with their growth parameters and photosynthetic pigments.Results Plant biomass, shoot-root length and photosynthetic pigments (chlorophyll- a, b, carotenoid & total chlorophyll) of wheat decreased under salt stress when increased up to 12 dS m-1 NaCl concentration. However, in salt stressed wheat plants, plant biomass increased by the Si application. Supplementation of Si improved the plant length as well as chlorophyll pigments which were decreased by the high salt concentration in plants. Silicon was found more effective in salt stressed condition than in alone with control.Conclusion So, it was determined that the Si application aided the wheat genotypes in alleviating salinity and enhancing their biomass and photosynthetic pigments which were declined in salt stress condition.

2017 ◽  
Vol 5 (4) ◽  
pp. 235-249 ◽  
Author(s):  
M. M. Hasan ◽  
M. A. Baque ◽  
M. A. Habib ◽  
M. Yeasmin ◽  
M. A. Hakim

2018 ◽  
Vol 6 (3) ◽  
pp. 21-31
Author(s):  
Md. Abdullahil Baque ◽  
Most. Faijunnahar ◽  
Md. Ahsan Habib ◽  
Mahmuda Motmainna

Author(s):  
Asfiqur Rahman Plabon ◽  
M. E. Hoque ◽  
Farhana Afrin Vabna ◽  
Fahima Khatun

Salinity is a major problem affecting crop production all over the world. Excessive soil salinity can reduce the productivity of many agricultural crops including many vegetables and spices. Onion is one of the most important spices in the Asiatic region which is now in high demand. The experiment was conducted to observe in vitro regeneration of onion (Allium cepa L.) under salt stress condition from September 2016 to July 2017. The experiment was conducted as two factorial (genotype and treatment) Completely Randomized Design (CRD) with 3 replications for each treatment. Shoot tip segments of three genotypes namely Faridpuri, Taherpuri and Pusa red (Indian) were cultured in MS (Murashige and skoog, 1962) media supplemented with 25, 50, 75 and 100 mM NaCl. The genotype Faridpuri gave maximum salt tolerance upto 100 mM salinity level with 10.60 cm shoot length and 1.94 cm root length having the highest relative shoot and root growth. Pusa red was found to be salinity sensitive genotype which showing lowest shoot length of 7.03 cm and root length of 0.96 cm at 100 mM NaCl treatment. However, Taherpuri was tolerant up to 100 mM salinity level with 8.14 cm shoot length and 1.25 cm root length. Both the highest fresh weight of root (54.77 mg) and dry weight of root (41.36 mg) was from the genotype Faridpuri with 25 mM NaCl treatment. However, a convenient in vitro regeneration protocol of onion genotypes under different salinity level has been developed and the genotype Faridpuri can be used for further investigation in field condition to evaluate its performance at various salinity levels.


Poljoprivreda ◽  
2016 ◽  
Vol 22 (2) ◽  
pp. 40-49 ◽  
Author(s):  
Khursheda Parvin ◽  
◽  
Kamal Uddin Ahamed ◽  
Mohammad Mahbub Islam ◽  
Nazmul Haque

2013 ◽  
Vol 82 (4) ◽  
pp. 303-311
Author(s):  
Łukasz Wojtyla ◽  
Magda Grabsztunowicz ◽  
Małgorzata Garnczarska

Embryo axes of lupine (<em>Lupinus luteus</em> L. ‘Mister’) were subjected to 0.1 M NaCl salt stress for 24 and 48 h. The ultrastructure modification and adjustment of antioxidant enzymes activities and izoenzymes profiles were observed. In cells of lupine embryo axes grown for 48 hours in medium with 0.1 M NaCl mitochondria took the forked shape and bulges of the outer mitochondrial membranes appeared. Moreover, the inflating and swelling of rough endoplasmic reticulum (RER) lumen and fragmentation of RER were noticed. The level of H<sub>2</sub>O<sub>2</sub> was higher in salt treated embryo axes after 24 hours and increase of thiobarbituric acid reactive substances was observed after both 24 and 48 h of salt treatment. Native gel electrophoresis showed increased intensities of bands for catalase isozymes in response to salt stress, whereas activity of catalase was higher only in embryo axes grown for 48 h in control conditions. Appearance of two new isoforms of ascorbate peroxidase was observed after 48 h only under control condition, however increased activities were stated for both control and salt-stress condition after 48 h. No changes in isozymes pattern for superoxide dismutase were observed, but significant decrease in superoxide dismutase activity was noticed in relation to time and salt stress. Possible role of these enzymes in salt stress tolerance is discussed. The 0.1 M salt stress is regarded as a middle stress for lupine embryo axes and the efficiency of stress prevention mechanisms is proposed.


Author(s):  
J.S. Gora ◽  
V.K. Singh ◽  
D.K. Sarolia ◽  
Kamlesh Kumar ◽  
Raj kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document