Growth, leaf gas exchange and physiological parameters of two Glycyrrhiza glabra L. populations subjected to salt stress condition

Rhizosphere ◽  
2021 ◽  
Vol 17 ◽  
pp. 100319
Author(s):  
Assieh Behdad ◽  
Sasan Mohsenzadeh ◽  
Majid Azizi
2017 ◽  
Vol 9 (2) ◽  
pp. 219-232 ◽  
Author(s):  
Jannatul FARDUS ◽  
Md. Abdul MATIN ◽  
Md. HASANUZZAMAN ◽  
Md. Shahadat HOSSAIN ◽  
Sheymol Dev NATH ◽  
...  

Present study investigates the regulatory roles of exogenous salicylic acid (SA) in physiology, antioxidant defense systems and yield of wheat under different salt stress condition. The experiment was conducted with two varieties i.e. BARIGom 21 and BARIGom 25 and ten salt stress treatments viz. control (without salt), SA (1 mMsalicylic acid), S50 (50 mMsalt stress), S50+SA (50 mMsalt stress with 1 mMSA), S100 (100 mMsalt stress), S100+SA (100 mMsalt stress with 1 mMSA), S150 (150 mMsalt stress), S150+SA (150 mMsalt stress with 1 mMSA), S200 (200 mMsalt stress) and S200+SA (200 mMsalt stress with 1 mMSA). Leaf relative water content (RWC) and chlorophyll (chl) content reduced due to salt stress. The malondialdelyde (MDA) and H2O2 were increased under the stress condition. The ascorbate (AsA) content, reduced glutathione (GSH) and GSH/GSSG ratio were reduced by salt stresses (50, 100, 150 and 200 mM, respectively). But the glutathione disulfide (GSSG) amount increased with an increase in the all level of salinity. The ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and catalase (CAT) activities showed a significant reduction in response to salt stress but CAT increased only at 100 mM stress condition. The glutathione S-transferase (GST) and glutathione reductase (GR) activity increased significantly with severe salt stress (200 mM). But the activity of peroxidase (POD) was decreased with increasing salinity level. At harvest, salt stresses reduced the effective tiller hill-1, 1000 grain weight, grain yield, straw yield, biological yield and harvest index for both of varieties. However, number of non-effective tiller hill-1 significantly increased in response of salt stress. Exogenous 1 mM SA application with salt stress improved physiological parameters, yield and reduced oxidative damage in both cultivars whereBARI Gom 25 showed better tolerance. But, SA application could not improve physiological parameters and yield at extreme level of salt stress (200 mM).


Author(s):  
Welson L. Simões ◽  
Anderson R. de Oliveira ◽  
Jucicléia S. da Silva ◽  
Vinicius G. Torres Junior ◽  
Weslley O. da Silva ◽  
...  

ABSTRACT Salinity is one of the factors that most limit agricultural yield in the Brazilian semi-arid region. In this context, the present study aimed to evaluate the leaf gas exchange and biometric characteristics of accessions of the Saccharum complex subjected to salt stress. The experiment was carried out in a greenhouse, installed at Embrapa Semiárido, in Petrolina, PE, Brazil. The experimental design was in randomized blocks, with the treatments represented by 19 accessions belonging to different genera/species, being 10 accessions of Saccharum officinarum (BGCN 6, BGCN 91, BGCN 104, BGCN 127, BCGN 90, BGCN 101, BGCN 102, BGCN 118, BGCN 125 and BGCN 122), two accessions of Saccharum spp. (BGCN 87 and BGCN 89), one accession of Saccharum hybridum (BGCN 88), one accession of Saccharum robustum (BGCN 94), four accessions of Erianthus arundinaceus (BGCN 117, BGCN 119, BGCN 120 and BGCN 123) and one accession of Miscanthus spp., with three repetitions. Biometric characteristics, chlorophyll index and leaf gas exchange of the accessions were evaluated when they were subjected to irrigation with salinized water (6.0 dS m-1). E. arundinaceus accessions (BGCN 120 and BGCN 123) showed the highest photosynthetic rate, transpiration rate, plant height and leaf length, indicating greater adaptability to salt stress and could be promising in breeding programs.


Author(s):  
Asfiqur Rahman Plabon ◽  
M. E. Hoque ◽  
Farhana Afrin Vabna ◽  
Fahima Khatun

Salinity is a major problem affecting crop production all over the world. Excessive soil salinity can reduce the productivity of many agricultural crops including many vegetables and spices. Onion is one of the most important spices in the Asiatic region which is now in high demand. The experiment was conducted to observe in vitro regeneration of onion (Allium cepa L.) under salt stress condition from September 2016 to July 2017. The experiment was conducted as two factorial (genotype and treatment) Completely Randomized Design (CRD) with 3 replications for each treatment. Shoot tip segments of three genotypes namely Faridpuri, Taherpuri and Pusa red (Indian) were cultured in MS (Murashige and skoog, 1962) media supplemented with 25, 50, 75 and 100 mM NaCl. The genotype Faridpuri gave maximum salt tolerance upto 100 mM salinity level with 10.60 cm shoot length and 1.94 cm root length having the highest relative shoot and root growth. Pusa red was found to be salinity sensitive genotype which showing lowest shoot length of 7.03 cm and root length of 0.96 cm at 100 mM NaCl treatment. However, Taherpuri was tolerant up to 100 mM salinity level with 8.14 cm shoot length and 1.25 cm root length. Both the highest fresh weight of root (54.77 mg) and dry weight of root (41.36 mg) was from the genotype Faridpuri with 25 mM NaCl treatment. However, a convenient in vitro regeneration protocol of onion genotypes under different salinity level has been developed and the genotype Faridpuri can be used for further investigation in field condition to evaluate its performance at various salinity levels.


2018 ◽  
Vol 70 (3) ◽  
pp. 413-423 ◽  
Author(s):  
Mohamed Farissi ◽  
Mohammed Mouradi ◽  
Omar Farssi ◽  
Abdelaziz Bouizgaren ◽  
Cherki Ghoulam

Salinity is one of the most serious agricultural problems that adversely affects growth and productivity of pasture crops such as alfalfa. In this study, the effects of salinity on some ecophysiological and biochemical criteria associated with salt tolerance were assessed in two Moroccan alfalfa (Medicago sativa L.) populations, Taf 1 and Tata. The experiment was conducted in a hydro-aeroponic system containing nutrient solutions, with the addition of NaCl at concentrations of 100 and 200 mM. The salt stress was applied for a month. Several traits in relation to salt tolerance, such as plant dry biomass, relative water content, leaf gas exchange, chlorophyll fluorescence, nutrient uptake, lipid peroxidation and antioxidant enzymes, were analyzed at the end of the experiment. The membrane potential was measured in root cortex cells of plants grown with or without NaCl treatment during a week. The results indicated that under salt stress, plant growth and all of the studied physiological and biochemical traits were significantly decreased, except for malondialdehyde and H2O2 contents, which were found to be increased under salt stress. Depolarization of membrane root cortex cells with the increase in external NaCl concentration was noted, irrespective of the growth conditions. The Tata population was more tolerant to high salinity (200 mM NaCl) and its tolerance was associated with the ability of plants to maintain adequate levels of the studied parameters and their ability to overcome oxidative stress by the induction of antioxidant enzymes, such as guaiacol peroxidase, catalase and superoxide dismutase.


Poljoprivreda ◽  
2016 ◽  
Vol 22 (2) ◽  
pp. 40-49 ◽  
Author(s):  
Khursheda Parvin ◽  
◽  
Kamal Uddin Ahamed ◽  
Mohammad Mahbub Islam ◽  
Nazmul Haque

2013 ◽  
Vol 82 (4) ◽  
pp. 303-311
Author(s):  
Łukasz Wojtyla ◽  
Magda Grabsztunowicz ◽  
Małgorzata Garnczarska

Embryo axes of lupine (<em>Lupinus luteus</em> L. ‘Mister’) were subjected to 0.1 M NaCl salt stress for 24 and 48 h. The ultrastructure modification and adjustment of antioxidant enzymes activities and izoenzymes profiles were observed. In cells of lupine embryo axes grown for 48 hours in medium with 0.1 M NaCl mitochondria took the forked shape and bulges of the outer mitochondrial membranes appeared. Moreover, the inflating and swelling of rough endoplasmic reticulum (RER) lumen and fragmentation of RER were noticed. The level of H<sub>2</sub>O<sub>2</sub> was higher in salt treated embryo axes after 24 hours and increase of thiobarbituric acid reactive substances was observed after both 24 and 48 h of salt treatment. Native gel electrophoresis showed increased intensities of bands for catalase isozymes in response to salt stress, whereas activity of catalase was higher only in embryo axes grown for 48 h in control conditions. Appearance of two new isoforms of ascorbate peroxidase was observed after 48 h only under control condition, however increased activities were stated for both control and salt-stress condition after 48 h. No changes in isozymes pattern for superoxide dismutase were observed, but significant decrease in superoxide dismutase activity was noticed in relation to time and salt stress. Possible role of these enzymes in salt stress tolerance is discussed. The 0.1 M salt stress is regarded as a middle stress for lupine embryo axes and the efficiency of stress prevention mechanisms is proposed.


2008 ◽  
Vol 27 (3) ◽  
pp. 385-392 ◽  
Author(s):  
Hugo Alves Pinheiro ◽  
José Vieira Silva ◽  
Laurício Endres ◽  
Vilma Marques Ferreira ◽  
Celene de Albuquerque Câmara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document