scholarly journals Ganglion Cell-Inner Plexiform Layer Thickness is Associated with Persistently Cognitive Decline -The Rugao Longevity and Aging Study

2020 ◽  
Author(s):  
Hui Zhang ◽  
Hangqi Shen ◽  
Xiaoyan Jiang ◽  
Sun Yao ◽  
Na Zhang ◽  
...  

Abstract Background: The simple, convenient and well-validated biomarkers are imperative for detection of cognitive decline (CD). The powerful evidence is lacked for verifying the reliability and clinical utility of retinal biomarkers for detection of CD with repeated assessments. To investigate the association of retinal thickness with CD using repeated assessments. Methods: This study included 446 older adults with three-time repeated assessments of cognitive function during 5-years follow-up. Retinal thickness measured on spectral-domain optical coherence tomography. Logistic regression models were conducted to analyze the association of retinal thickness with cognitive function. Results: According to cognitive status in three assessments, individuals were categorized into consistently normal cognition groups (N = 159), persistently CD groups (N = 134), progressed to CD groups (N = 70), and reverting or fluctuating CD groups (N = 83). Thinner ganglion cell-inner plexiform layer (GC-IPL) was associated with persistently CD (odds ratio [OR] per 1-μm decrease: 1.09, 95% confidence interval [CI], 1.02-1.18; per standard deviation [SD] decrease: 1.78, 95%CI, 1.04-3.19) rather than progressed to CD, reverting or fluctuating CD. No significant relationship was found between retinal nerve fiber layer and any CD subgroups (p > 0.05). Conclusions: Thinner GC-IPL was associated with persistently CD, suggesting retinal neurodegeneration may be a promising biomarker for persistently CD. Further studies, including both longitudinal and repeated measurements of retinal layer thickness and cognitive function, are needed to assess the possibility of retinal thickness as a biomarker for persistent CD.

2021 ◽  
Author(s):  
Makoto Araie ◽  
Makoto Fujii ◽  
Yuko Ohno ◽  
Yuki Tanaka ◽  
Tsutomu Kikawa ◽  
...  

Abstract Aging-associated changes in visual field (VF) sensitivity were compared prospectively and longitudinally with the circumpapillary retinal nerve fiber layer thickness (cpRNFLT) and macular ganglion cell-inner plexiform layer thickness (GCIPLT) changes in the corresponding retinal areas of the same eyes (72 eyes of 37 normal Japanese subjects; mean age, 51.3 years). The Humphrey Field Analyzer 24-2 test (HFA 24-2) and spectral-domain optical coherence tomography (SD-OCT) measurements of the cpRNFLT and GCIPLT in a 0.6-mm-diameter circle corresponding to the four central points of HFA 24-2 adjusted for retinal ganglion cell displacement (GCIPLT4TestPoints) were performed every 3 months for 3 years. The tiem changes of the mean sensitivity over the entire field (VFmean) and the four central points (VF4TestPoints), cpRNFLT, and GCIPLT4TestPoints were analyzed using a linear mixed model. The aging-associated decline rates of VFmean and VF4TestPoins were 0.12 and 0.19 decibels/year (p<0.001), which significantly accelerated with increased subjects’ age (0.009 and 0.010 decibels/year, p<0.001, respectively) without changes in the ocular media. Those of the CpRNFLT and GCIPLT4TestPoints were not significant in both (p>0.114), but significantly accelerated with increased subjects’ age (0.021 and 0.010 mm/year, p=0.001 and 0.004, respectively). These results have implications in studying physiological aging- or desease-related changes in these parameters.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ga-In Lee ◽  
Kyung-Ah Park ◽  
Sei Yeul Oh ◽  
Doo-Sik Kong ◽  
Sang Duk Hong

AbstractWe evaluated postoperative retinal thickness in pediatric and juvenile craniopharyngioma (CP) patients with chiasmal compression using optical coherence tomography (OCT) auto-segmentation. We included 18 eyes of 18 pediatric or juvenile patients with CP and 20 healthy controls. Each thickness of the macular retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer, outer plexiform layer, outer nuclear layer, and photoreceptor layer was compared between the CP patients and healthy controls. There was significant thinning in the macular RNFL (estimates [μm], superior, − 10.68; inferior, − 7.24; nasal, − 14.22), all quadrants of GCL (superior, − 16.53; inferior, − 14.37; nasal, − 24.34; temporal, − 9.91) and IPL (superior, − 11.45; inferior, − 9.76; nasal, − 15.25; temporal, − 4.97) in pediatric and juvenile CP patients postoperatively compared to healthy control eyes after adjusting for age and refractive errors. Thickness reduction in the average and nasal quadrant of RNFL, GCL, and IPL was associated with peripapillary RNFL thickness, and reduced nasal quadrant GCL and IPL thicknesses were associated with postoperative visual field defects. In pediatric and juvenile patients with CP, decreased inner retinal layer thickness following chiasmal compression was observed. The changes in retinal structures were closely related to peripapillary RNFL thinning and functional outcomes.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9481
Author(s):  
Jing Zou ◽  
Wei Tan ◽  
Wenlong Huang ◽  
Kangcheng Liu ◽  
Fangling Li ◽  
...  

Purpose We investigated the correlation between visual acuity (VA) and individual retinal layer thickness in the foveal, parafoveal, and perifoveal regions of patients with an idiopathic epiretinal membrane (ERM). Methods One hundred and five subjects presenting with unilateral idiopathic ERM were included in this study. We segmented each patient’s optical coherence tomography (OCT) image into seven layers and calculated the mean layer thickness in the foveal, parafoveal, and perifoveal regions using the Iowa Reference Algorithm. In 105 patients with ERM, we detected correlations between their macular regions’ individual retinal layer thickness and their best corrected VA. Thirty-one of the 105 patients with ERM underwent vitrectomy and completed six months of follow-up. We then compared the 31 surgical patients’ preoperative and postoperative individual retinal layer thickness in each macular region. Additionally, the association between preoperative individual retinal layer thickness in each macular region and VA six months post-surgery in patients with ≥ two Snellen lines of visual improvement was determined. Results Multiple linear regression analysis showed that the inner nuclear layer (INL) thickness in the foveal, parafoveal, and perifoveal region were all associated with VA in the 105 patients (R2 = 0.344, P < 0.001; R2 = 0.427, P < 0.001; and R2 = 0.340, P < 0.001, respectively). Thirty-one surgical patients 6 months post-surgery showed significantly decreased thicknesses (P ≤ 0.012) of the foveal INL, inner plexiform layer (IPL), and outer nuclear layer (ONL); the parafoveal retina nerve fiber layer (RNFL), IPL, INL, and ONL; and the perifoveal RNFL, IPL, INL, ganglion cell layer (GCL), outer plexiform layer (OPL), and photoreceptor layer (PRL). We found a weak correlation between postoperative VA and preoperative foveal and perifoveal RNFL thickness (r = 0.404 and r = 0.359, respectively), and a moderate correlation between postoperative VA and preoperative foveal and parafoveal INL thickness (r = 0.529 and r = 0.583, respectively) in the 31 surgical patients (P ≤ 0.047). The preoperative INL thickness in the foveal, parafoveal, and perifoveal regions showed a moderate to strong correlation (r = 0.507, 0.644, and 0.548, respectively), with postoperative VA in patients with ≥ 2 lines of visual improvement (P ≤ 0.038). Conclusion We detected a correlation between retinal damage and VA in the parafoveal, perifoveal, and foveal regions. Our results suggest that INL thickness in all macular regions may be a prognostic factor for postoperative VA in ERM patients.


Sign in / Sign up

Export Citation Format

Share Document