scholarly journals Corrosion Inhibition Performance of Azelaic Acid Dihydrazide And Its Potential Predicted To Target The SARS-CoV-2 Spike Protein With Docking Study

Author(s):  
Matine Abdelmalek ◽  
Ali Barhoumi ◽  
Said Bayadi ◽  
Mohammed El idrissi ◽  
Mohammed Salah ◽  
...  

Abstract The adsorption of azelaic acid dihydrazide as an environmentally friendly mild steel corrosion inhibitor on the iron surface was modelled in this study. We used density functional theory (DFT) calculations and Monte Carlo (MC) and Molecular dynamics (MD) simulations to illustrate the interactions engaged. The interaction of the azelaic acid derivatives with iron metal (Fe) was examined by DFT as a typical example of a corrosion prevention mechanism after the optimized molecular structures of these molecules were investigated. Structures, binding energies, Fikui's charge indicator, electron transfer, and chemical potential are all discussed, the presence of significant binding between the inhibitor and Fe metal is supported by analysis of the resultant complex. Then, in an acidic solution comprising 491,H2O, nine chlorine ions Cl-, and nine hydronium ions H3O+, molecular dynamic, Monte Carlo (MC) simulation were used to model the adsorption of azelaic acid dihydrazide on the iron Fe (110) surface. In addition, radial distribution function (RDF) and interaction energy (Ei) were evaluated in this work to further our understanding of interactions between azelaic acid dihydrazide and iron surfaces. Furthermore, we discovered that our inhibitors have an excellent ability to slow down the movement of corrosive particles in law temperature and thus to inhibit the metallic substrate against corrosive electrolyte, based on the temperature impact investigation. The result of density functional theory, Mont Carlo and molecular dynamic descriptors obtained were in good agreement with the experimental result.

Author(s):  
Quintin Hill ◽  
Chris-Kriton Skylaris

While density functional theory (DFT) allows accurate quantum mechanical simulations from first principles in molecules and solids, commonly used exchange-correlation density functionals provide a very incomplete description of dispersion interactions. One way to include such interactions is to augment the DFT energy expression by damped London energy expressions. Several variants of this have been developed for this task, which we discuss and compare in this paper. We have implemented these schemes in the ONETEP program, which is capable of DFT calculations with computational cost that increases linearly with the number of atoms. We have optimized all the parameters involved in our implementation of the dispersion correction, with the aim of simulating biomolecular systems. Our tests show that in cases where dispersion interactions are important this approach produces binding energies and molecular structures of a quality comparable with high-level wavefunction-based approaches.


2005 ◽  
Vol 237-240 ◽  
pp. 1129-1134
Author(s):  
Mariya G. Ganchenkova ◽  
V.A. Borodin ◽  
Risto M. Nieminen

In this paper we discuss possible mechanisms of PV annealing in Si. Our approach includes a combination of density functional theory and lattice kinetic Monte-Carlo (LKMC) simulations. The density functional theory is used to find the binding energies and jump barriers for P-V pair at different separations (from one to three interatomic bonds between complex constituents) and in different charge states. The mobility of the complex is simulated by LKMC with event probabilities calculated based on the energies from ab-initio calculations. .


2006 ◽  
Vol 84 (8) ◽  
pp. 1045-1049 ◽  
Author(s):  
Shabaan AK Elroby ◽  
Kyu Hwan Lee ◽  
Seung Joo Cho ◽  
Alan Hinchliffe

Although anisyl units are basically poor ligands for metal ions, the rigid placements of their oxygens during synthesis rather than during complexation are undoubtedly responsible for the enhanced binding and selectivity of the spherand. We used standard B3LYP/6-31G** (5d) density functional theory (DFT) to investigate the complexation between spherands containing five anisyl groups, with CH2–O–CH2 (2) and CH2–S–CH2 (3) units in an 18-membered macrocyclic ring, and the cationic guests (Li+, Na+, and K+). Our geometric structure results for spherands 1, 2, and 3 are in good agreement with the previously reported X-ray diffraction data. The absolute values of the binding energy of all the spherands are inversely proportional to the ionic radius of the guests. The results, taken as a whole, show that replacement of one anisyl group by CH2–O–CH2 (2) and CH2–S–CH2 (3) makes the cavity bigger and less preorganized. In addition, both the binding and specificity decrease for small ions. The spherands 2 and 3 appear beautifully preorganized to bind all guests, so it is not surprising that their binding energies are close to the parent spherand 1. Interestingly, there is a clear linear relation between the radius of the cavity and the binding energy (R2 = 0.999).Key words: spherands, preorganization, density functional theory, binding energy, cavity size.


2010 ◽  
Vol 21 (12) ◽  
pp. 1469-1477 ◽  
Author(s):  
M. SAMAH ◽  
B. BOUGHIDEN

Structures, binding energies, magnetic and electronic properties endohedrally doped C 20 fullerenes by metallic atoms ( Fe , Co , Ti and V ) have been obtained by pseudopotential density functional theory. All M @ C 20, except Co @ C 20, are more stable than the undoped C 20 cage. The magnetic moment values are 1 and 2μB. These values and semiconductor behavior give to these compounds interesting feature in several technological applications. Titanium doped C 20 has a same magnetic moment than the isolated Ti atom. Hybridization process in the Co doped C 20 fullerene is most strong than in other doped cages. Electrical and magnetic dipoles calculated in the iron doped C 20 are very strong compared with other clusters.


Langmuir ◽  
2017 ◽  
Vol 33 (42) ◽  
pp. 11332-11344 ◽  
Author(s):  
Hsiu-Yu Yu ◽  
Zahera Jabeen ◽  
David M. Eckmann ◽  
Portonovo S. Ayyaswamy ◽  
Ravi Radhakrishnan

Sign in / Sign up

Export Citation Format

Share Document