scholarly journals Diamondoids and Thiadiamondoids Generated From Hydrothermal Pyrolysis of Crude Oil and TSR Experiments

Author(s):  
Yanyan Peng ◽  
Chunfang Cai ◽  
Chenchen Fang ◽  
Liangliang Wu ◽  
Jinzhong Liu ◽  
...  

Abstract Diamondoid compounds are widely used to reflect thermal maturation of high mature source rocks or oils and oil cracking extents. However, diamondoids and thiadiamondoids were demonstrated to have newly been generated and decomposed in our hydrothermal pyrolysis of crude oil and TSR experiments. Our results show that adamantanes and diamantanes are generated primarily within the maturity range 0.48–2.1% and 1.2–3.0% EasyRo, respectively. Their formation is enhanced and the decomposition of diamantanes obviously lags behind at elevated temperatures compared with anhydrous experiments. MDI, EAI, DMAI-1, DMDI-2 may serve as reliable maturity proxies at > ca.1.0% EasyRo, and other isomerization indices (TMAI-1, TMAI-2 and DMAI-2) are effective for the highly mature organic matter at EasyRo > 2.0%. The extent of oil cracking (EOC) calculated from the broadly used 3-+4-MD method (Dahl et al., 1999) is proven to overestimate, especially for highly cracked samples due to the new generation of 3-+4-MD. Still, it can be corrected using a new formula at <3.0% EasyRo. Other diamondoid-related indices (e.g. EAI, DMDI-2, As/Ds, MAs/MDs, DMAs/DMDs, and DMAs/MDs) can also be used to estimate EOC. However, these indices cannot be applied to TSR-altered petroleum. TSR is experimentally confirmed to generate diamantanes and thiaadmantanes at 1.81% EasyRo via direct reactions of reduced S species with hydrocarbons and accelerate the decomposition of diamantanes at > 3.0% EasyRo compared with thermal chemical alteration (TCA).

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanyan Peng ◽  
Chunfang Cai ◽  
Chenchen Fang ◽  
Liangliang Wu ◽  
Jinzhong Liu ◽  
...  

AbstractDiamondoid compounds are widely used to reflect thermal maturation of high mature source rocks or oils and oil cracking extents. However, diamondoids and thiadiamondoids were demonstrated to have newly been generated and decomposed in our hydrothermal pyrolysis of crude oil and TSR experiments. Our results show that adamantanes and diamantanes are generated primarily within the maturity range 0.48–2.1% and 1.2–3.0% EasyRo, respectively. Their formation is enhanced and the decomposition of diamantanes obviously lags at elevated temperatures compared with anhydrous experiments. MDI, EAI, DMAI-1, DMDI-2 may serve as reliable maturity proxies at > ca.1.0% EasyRo, and other isomerization indices (TMAI-1, TMAI-2 and DMAI-2) are effective for the highly mature organic matter at EasyRo > 2.0%. The extent of oil cracking (EOC) calculated from the broadly used (3- + 4-) MD method (Dahl et al. in Nature 399:54–56, 1999) is proven to overestimate, especially for highly cracked samples due to the new generation of (3- + 4-) MD. Still, it can be corrected using a new formula at < 3.0% EasyRo. Other diamondoid-related indices (e.g., EAI, DMDI-2, As/Ds, MAs/MDs, DMAs/DMDs, and DMAs/MDs) can also be used to estimate EOC. However, these indices cannot be applied to TSR-altered petroleum. TSR is experimentally confirmed to generate diamantanes and thiaadmantanes at 1.81% EasyRo likely via direct reactions of reduced S species with hydrocarbons and accelerate the decomposition of diamantanes at > 2.62% EasyRo compared with thermal chemical alteration (TCA). More studies are needed to assess specific mechanisms for the formation of thiadiamondoids under natural conditions.


2019 ◽  
Author(s):  
A. Cavelan ◽  
M. Boussafir ◽  
C. Le Milbeau ◽  
S. Delpeux ◽  
O. Rozenbaum ◽  
...  

2018 ◽  
Vol 115 (49) ◽  
pp. 12365-12370 ◽  
Author(s):  
Jeremie Berthonneau ◽  
Amaël Obliger ◽  
Pierre-Louis Valdenaire ◽  
Olivier Grauby ◽  
Daniel Ferry ◽  
...  

Organic matter is responsible for the generation of hydrocarbons during the thermal maturation of source rock formation. This geochemical process engenders a network of organic hosted pores that governs the flow of hydrocarbons from the organic matter to fractures created during the stimulation of production wells. Therefore, it can be reasonably assumed that predictions of potentially recoverable confined hydrocarbons depend on the geometry of this pore network. Here, we analyze mesoscale structures of three organic porous networks at different thermal maturities. We use electron tomography with subnanometric resolution to characterize their morphology and topology. Our 3D reconstructions confirm the formation of nanopores and reveal increasingly tortuous and connected pore networks in the process of thermal maturation. We then turn the binarized reconstructions into lattice models including information from atomistic simulations to derive mechanical and confined fluid transport properties. Specifically, we highlight the influence of adsorbed fluids on the elastic response. The resulting elastic energy concentrations are localized at the vicinity of macropores at low maturity whereas these concentrations present more homogeneous distributions at higher thermal maturities, due to pores’ topology. The lattice models finally allow us to capture the effect of sorption on diffusion mechanisms with a sole input of network geometry. Eventually, we corroborate the dominant impact of diffusion occurring within the connected nanopores, which constitute the limiting factor of confined hydrocarbon transport in source rocks.


2015 ◽  
Vol 52 (11) ◽  
pp. 1014-1026 ◽  
Author(s):  
Jian Ma ◽  
Zhilong Huang ◽  
Xiaoyu Gao ◽  
Changchao Chen

Tight oil in the Permian Tiaohu Formation in the Santanghu Basin, northwest China, has a peculiar property such that the reservoir is sedimentary organic matter-bearing tuff characterized by high porosity (10%–25%) and very low permeability, mainly in the range of 0.01–0.50 mD. Biomarker and stable carbon isotope compositions of selected crude oils and source-rock extracts were analyzed to determine the source rock of the tight oil. Source rocks in the Lucaogou Formation consist of various rock types dominated by mudstones containing organic matter with intense yellow–green fluorescence. Mudstones in the Lucaogou Formation have total organic carbon (TOC) values mainly in the range of 1.0–8.0 wt%, hydrocarbon generation potential (S1 + S2) mostly >6 mg/g, and chloroform extractable bitumen “A” generally >0.1%. The maceral composition is predominantly fluorescing amorphinite. The hydrogen index (HI) varies from 300 to 900 mg HC/g TOC, indicating dominant Type I and Type II kerogen. Compared with the mudstones and tuffs in the Tiaohu Formation, the mudstones in the Lucaogou Formation are the best source rocks. The biomarker characteristics of mudstone extracts in the Lucaogou Formation differ from those in the Tiaohu Formation, based on the gammacerane index, β-carotane content, and the relative contents of C27, C28, and C29 regular steranes. Crude oil samples in the tuff show low pristane/phytane (Pr/Ph) ratios, high gammacerane indices, high β-carotane, and a dominance of the C29 regular sterane followed by C28 and C27 steranes, as well as depleted stable carbon isotope compositions. Oil–source correlation with biomarkers and δ13C values shows that the crude oil in the tuffs mainly originates from underlying source rocks in the Lucaogou Formation. The sedimentary organic matter in the tuffs also makes a small contribution to the tuffaceous reservoir. Therefore, the tuffaceous tight reservoir in the Tiaohu Formation is unusual in that the oil is not indigenous; rather, it migrates a long distance to accumulate in the upper reservoir.


2021 ◽  
Vol 18 (2) ◽  
pp. 398-415
Author(s):  
He Bi ◽  
Peng Li ◽  
Yun Jiang ◽  
Jing-Jing Fan ◽  
Xiao-Yue Chen

AbstractThis study considers the Upper Cretaceous Qingshankou Formation, Yaojia Formation, and the first member of the Nenjiang Formation in the Western Slope of the northern Songliao Basin. Dark mudstone with high abundances of organic matter of Gulong and Qijia sags are considered to be significant source rocks in the study area. To evaluate their development characteristics, differences and effectiveness, geochemical parameters are analyzed. One-dimensional basin modeling and hydrocarbon evolution are also applied to discuss the effectiveness of source rocks. Through the biomarker characteristics, the source–source, oil–oil, and oil–source correlations are assessed and the sources of crude oils in different rock units are determined. Based on the results, Gulong and Qijia source rocks have different organic matter primarily detrived from mixed sources and plankton, respectively. Gulong source rock has higher thermal evolution degree than Qijia source rock. The biomarker parameters of the source rocks are compared with 31 crude oil samples. The studied crude oils can be divided into two groups. The oil–source correlations show that group I oils from Qing II–III, Yao I, and Yao II–III members were probably derived from Gulong source rock and that only group II oils from Nen I member were derived from Qijia source rock.


Sign in / Sign up

Export Citation Format

Share Document