scholarly journals Implementation of Adaptive Fault-Tolerant Tracking Control for Robot Manipulators with Integral Sliding Mode

Author(s):  
Linzhi Liu ◽  
Liyin Zhang ◽  
Yinlong Hou ◽  
Dafeng Tang ◽  
Hui Liu

Abstract This paper addresses an adaptive fault-tolerant tracking control for robot manipulators. By fully considering the effects of uncertainties and actuator effectiveness faults (UAEFs), a robust fault-tolerant tracking control combining with an auxiliary function and an integral sliding manifold is first developed for uncertain robot manipulators. Then, an adaptive law for unknown parameters of the upper bounded uncertainties is constructed to obtain a robust fault-tolerant approach with the elimination of the reaching phase of sliding mode control (SMC). The stability of the proposed approaches is accomplished by Lyapunov stable theory. The key contributions of the proposed approach are as follows: i) the reaching phase of SMC is removed in the control design and then the sliding mode starts at very beginning; (ii) the nominal control term is eliminated in the design of integral sliding surface and then the algebraic loop problem is also avoided in the proposed approach for robot manipulators; (iii) the simple control structure with an adaptive law is obtained for improving chattering-restraining ability of the proposed approach and then the effects of time delay and computational burden are also restrained from the proposed approach. Simulation and experimental comparisons have been accomplished for verifying the effectiveness of the proposed approach.

2020 ◽  
Vol 10 (8) ◽  
pp. 2909 ◽  
Author(s):  
Jaemin Baek ◽  
Wookyong Kwon

We present a practical adaptive sliding-mode control approach, namely, the strong and stable adaptive sliding-mode control (SS-ASMC), in this paper. There is a significant effort towards addressing the technical challenges associated with the switching gains with two adaptive laws, which are called parent and child adaptive laws. A parent adaptive law helps achieve strong switching gains through fast adaptation rate when sliding variable moves away from the sliding manifold. A child adaptive law updates the parameter of the parent adaptive law, which helps to achieve the switching gains with fast and stable adaptation rate in the vicinity of the sliding manifold. Such switching gains with two adaptive laws provide remarkably precise tracking performance while enhancing the robustness. Besides, to yield desirable closed-loop poles and simplicity of control approach structure, the proposed SS-ASMC approach employs a combination of time-delayed estimation and pole-placement method, which makes it unnecessary to have a rather complete system dynamics. It is shown by the bounded-input-bounded-output stability through the Lyapunov approach, and thus the tracking errors are also proved to be uniformly ultimately bounded. The effectiveness of the proposed SS-ASMC approach is illustrated in simulations with robot manipulators, which is compared with that of the existing control approaches.


Author(s):  
Van Mien ◽  
Hee-Jun Kang ◽  
Kyoo-Sik Shin

This article develops a new output feedback tracking control scheme for uncertain robot manipulators with only position measurements. Unlike the conventional sliding mode controller, a quasi-continuous second-order sliding mode controller (QC2C) is first designed. Although the QC2C produces continuous control and less chattering than conventional sliding mode and other high-order sliding mode controllers, chattering exists when the sliding manifold is defined by the equation [Formula: see text]. To alleviate the chattering, an adaptive fuzzy QC2C (FQC2C) is designed, in which the fuzzy system is used to adaptively tune the sliding mode controller gain. Furthermore, in order to eliminate chattering and achieve higher tracking accuracy, quasi-continuous third-order sliding mode controller (QC3C) and fuzzy QC3C (FQC3C) are investigated. These controllers incorporate a super-twisting second-order sliding mode observer for estimating the joint velocities, and a robust exact differentiator to estimate the sliding manifold derivative; therefore, the velocity measurement is not required. Finally, computer simulation results for a PUMA560 industrial robot are also shown to verify the effectiveness of the proposed strategy.


2019 ◽  
Vol 90 ◽  
pp. 257-266 ◽  
Author(s):  
Antonella Ferrara ◽  
Gian Paolo Incremona ◽  
Bianca Sangiovanni

2020 ◽  
Vol 53 (7-8) ◽  
pp. 1309-1317
Author(s):  
Bei Liu ◽  
Yang Yi ◽  
Hong Shen ◽  
Chengbo Niu

This brief proposes a novel composite observer-based integral sliding mode tracking control algorithm for a class of nonlinear systems affected by both actuator faults and mismatched disturbances. First, different types of observers, including the extended state observer, the fault diagnosis observer, and the disturbance observer, are integrated to estimate the unknown system state, actuator faults, and mismatched disturbances timely. Then, in accordance with the estimation information, the integral sliding surface and the integral sliding mode controller are proposed, which can tolerate the actuator faults and reject the mismatched disturbances. Meanwhile, the state trajectories can be driven into the specified sliding surface in a finite time. Furthermore, not only the stability, but the favorable dynamical tracking and the output constraints of closed-loop augmented systems can be guaranteed. Finally, the validities of the proposed algorithm are embodied by the simulation results of typical A4D systems.


Sign in / Sign up

Export Citation Format

Share Document