scholarly journals Dexmedetomidine Improved One-lung Ventilation-induced Cognitive Dysfunction in Rats

Author(s):  
Mengyun LI ◽  
Zhe JIN ◽  
Jia ZHAN ◽  
Yanlin WANG ◽  
Kai CHEN

Abstract Background: One-lung ventilation (OLV) is widely used in thoracic surgery. However, OLV may also increase CERO2 and aggravate delayed cognitive recovery. Here, we aimed to investigate the effect of dexmedetomidine (DEX) on cognitive function in rats undergoing OLV. Methods: Sprague-Dawley rats were randomly divided into two-lung ventilation (TLV) group, OLV group and OLV treated with DEX group. Group DEX received 25 μg/kg DEX i.p. 30 min before induction. After mechanical ventilation (MV), Morris water maze (MWM) test was carried out to examine spatial memory function. Western blotting was used to detect pERK1/2, pCREB, Bcl-2 and BAX in hippocampal tissues. Transmission electron microscopy (TEM) was used to observe the hippocampal CA1 region. Results: Post-MV, compared with group OLV, group DEX showed increases in percentage of target quadrant time (P<0.05), platform crossings (P<0.05), a reduction in CERO2 (P<0.05), and pERK1/2, pCREB, and Bcl-2 significantly increased (P<0.01 or P<0.05), while BAX significantly decreased (P<0.01), besides, a less damaged synaptic structure was observed in group DEX. Conclusions: DEX improved post-MV cognitive function in rats undergoing OLV, reduced cerebral oxygen consumption, protected synaptic structure and upregulated ERK1/2-CREB anti-apoptotic signaling pathway in hippocampal CA1 region.

2021 ◽  
Vol 15 ◽  
Author(s):  
Sihan Guo ◽  
Ruimin Wang ◽  
Jiewei Hu ◽  
Liping Sun ◽  
Xinru Zhao ◽  
...  

Our recent study revealed that photobiomodulation (PBM) inhibits delayed neuronal death by preserving mitochondrial dynamics and function following global cerebral ischemia (GCI). In the current study, we clarified whether PBM exerts effective roles in endogenous neurogenesis and long-lasting neurological recovery after GCI. Adult male rats were treated with 808 nm PBM at 20 mW/cm2 irradiance for 2 min on cerebral cortex surface (irradiance ∼7.0 mW/cm2, fluence ∼0.8 J/cm2 on the hippocampus) beginning 3 days after GCI for five consecutive days. Cognitive function was evaluated using the Morris water maze. Neural stem cell (NSC) proliferation, immature neurons, and mature neurons were examined using bromodeoxyuridine (BrdU)-, doublecortin (DCX)-, and NeuN-staining, respectively. Protein expression, such as NLRP3, cleaved IL1β, GFAP, and Iba1 was detected using immunofluorescence staining, and ultrastructure of astrocyte and microglia was observed by transmission electron microscopy. The results revealed that PBM exerted a markedly neuroprotective role and improved spatial learning and memory ability at 58 days of ischemia/reperfusion (I/R) but not at 7 days of reperfusion. Mechanistic studies revealed that PBM suppressed reactive astrocytes and maintained astrocyte regeneration at 7 days of reperfusion, as well as elevated neurogenesis at 58 days of reperfusion, as evidenced by a significant decrease in the fluorescence intensity of GFAP (astrocyte marker) but unchanged the number of BrdU-GFAP colabeled cells at the early timepoint, and a robust elevation in the number of DCX-NeuN colabeled cells at the later timepoint in the PBM-treated group compared to the GCI group. Notably, PBM treatment protected the ultrastructure of astrocyte and microglia cells at 58 days but not 7 days of reperfusion in the hippocampal CA1 region. Furthermore, PBM treatment significantly attenuated the GCI-induced immunofluorescence intensity of NLRP3 (an inflammasome component), cleaved IL1β (reflecting inflammasome activation) and Iba1, as well as the colocalization of NLRP3/GFAP or cleaved IL-1β/GFAP, especially in animals subjected to I/R at 58 days. Taken together, PBM treatment performed postischemia exerted a long-lasting protective effect on astrocytes and promoted endogenous neurogenesis in the hippocampal CA1 region, which might contribute to neurological recovery after GCI.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Raul Loera-Valencia ◽  
Erika Vazquez-Juarez ◽  
Alberto Muñoz ◽  
Gorka Gerenu ◽  
Marta Gómez-Galán ◽  
...  

AbstractAlterations in brain cholesterol homeostasis in midlife are correlated with a higher risk of developing Alzheimer’s disease (AD). However, global cholesterol-lowering therapies have yielded mixed results when it comes to slowing down or preventing cognitive decline in AD. We used the transgenic mouse model Cyp27Tg, with systemically high levels of 27-hydroxycholesterol (27-OH) to examine long-term potentiation (LTP) in the hippocampal CA1 region, combined with dendritic spine reconstruction of CA1 pyramidal neurons to detect morphological and functional synaptic alterations induced by 27-OH high levels. Our results show that elevated 27-OH levels lead to enhanced LTP in the Schaffer collateral-CA1 synapses. This increase is correlated with abnormally large dendritic spines in the stratum radiatum. Using immunohistochemistry for synaptopodin (actin-binding protein involved in the recruitment of the spine apparatus), we found a significantly higher density of synaptopodin-positive puncta in CA1 in Cyp27Tg mice. We hypothesize that high 27-OH levels alter synaptic potentiation and could lead to dysfunction of fine-tuned processing of information in hippocampal circuits resulting in cognitive impairment. We suggest that these alterations could be detrimental for synaptic function and cognition later in life, representing a potential mechanism by which hypercholesterolemia could lead to alterations in memory function in neurodegenerative diseases.


Synapse ◽  
1988 ◽  
Vol 2 (4) ◽  
pp. 382-394 ◽  
Author(s):  
Dennis D. Kunkel ◽  
Jean-Claude Lacaille ◽  
Philip A. Schwartzkroin

2012 ◽  
Vol 37 (5) ◽  
pp. 1011-1018 ◽  
Author(s):  
Dae Young Yoo ◽  
Woosuk Kim ◽  
Sung Min Nam ◽  
Jin Young Chung ◽  
Jung Hoon Choi ◽  
...  

1997 ◽  
Vol 77 (6) ◽  
pp. 3013-3020 ◽  
Author(s):  
Hiroshi Katsuki ◽  
Yukitoshi Izumi ◽  
Charles F. Zorumski

Katsuki, Hiroshi, Yukitoshi Izumi, and Charles F. Zorumski. Noradrenergic regulation of synaptic plasticity in the hippocampal CA1 region. J. Neurophysiol. 77: 3013–3020, 1997. The effects of norepinephrine (NE) and related agents on long-lasting changes in synaptic efficacy induced by several patterns of afferent stimuli were investigated in the CA1 region of rat hippocampal slices. NE (10 μM) showed little effect on the induction of long-term potentiation (LTP) triggered by theta-burst-patterned stimulation, whereas it inhibited the induction of long-term depression (LTD) triggered by 900 pulses of 1-Hz stimulation. In nontreated slices, 900 pulses of stimuli induced LTD when applied at lower frequencies (1–3 Hz), and induced LTP when applied at a higher frequency (30 Hz). NE (10 μM) caused a shift of the frequency-response relationship in the direction preferring potentiation. The effect of NE was most prominent at a stimulus frequency of 10 Hz, which induced no changes in control slices but clearly induced LTP in the presence of NE. The facilitating effect of NE on the induction of LTP by 10-Hz stimulation was blocked by theβ-adrenergic receptor antagonist timolol (50 μM), but not by the α receptor antagonist phentolamine (50 μM), and was mimicked by the β-agonist isoproterenol (0.3 μM), but not by the α1 agonist phenylephrine (10 μM). The induction of LTD by 1-Hz stimulation was prevented by isoproterenol but not by phenylephrine, indicating that the activation of β-receptors is responsible for these effects of NE. NE (10 μM) also prevented the reversal of LTP (depotentiation) by 900 pulses of 1-Hz stimulation delivered 30 min after LTP induction. In contrast to effects on naive (nonpotentiated) synapses, the effect of NE on previously potentiated synapses was only partially mimicked by isoproterenol, but fully mimicked by coapplication of phenylephrine and isoproterenol. In addition, the effect of NE was attenuated either by phentolamine or by timolol, indicating that activation of both α1 and β-receptors is required. These results show that NE plays a modulatory role in the induction of hippocampal synaptic plasticity. Althoughβ-receptor activation is essential, α1 receptor activation is also necessary in determining effects on previously potentiated synapses.


Sign in / Sign up

Export Citation Format

Share Document