scholarly journals Comparative Transcriptome and WGCNA Reveal Candidate Genes Involved in Petaloid Stamens in Paeonia Lactiflora

2020 ◽  
Author(s):  
Yongming Fan ◽  
Yanyi Zheng ◽  
Jaime A. Teixeira da Silva ◽  
Xiaonan Yu

Abstract Background: The phenomenon of petaloid stamens in Paeonia lactiflora is an important cause of double flower formation. Although research on stamen development in model plants has progressed, the molecular mechanism of P. lactiflora petaloid stamens is still unclear. Results: In this study, a comparative transcriptomic analysis was performed on two cultivars of P. lactiflora (‘Fen Yu Nu’ and ‘Lian Tai’) with different stamen developmental patterns. Using transcriptome sequencing, 89,393 unigenes were identified in P. lactiflora. Trend analysis and weighted gene co-expression network analysis (WGCNA) indicated that 18 candidate genes were likely involved in petaloid stamens, including seven MADS-box genes PlAP3, PlDEFA, PlPI2, PlAG-1, PlSEP3, PlSEP1-1, and PlSEP1-2, and 11 transcription factors (TFs) PlTCP2, PlTCP4, PlTCP9, PlbHLH36, PlICE1, PlLBD38, PlNAC083, PlBLH11, PlPDF2, PlGBF1, and PlIIIA. Based on the selected candidate genes, a hypothetical model of gene expression network regulating petaloid stamens is proposed. Conclusions: Our results provide a collection of candidate genes for the analysis of P. lactiflora petaloid stamens, allowing for in-depth studies of the development pattern of P. lactiflora flower organs, and providing a theoretical basis for related research on petaloid stamens of other herbaceous flowers.

2014 ◽  
Vol 178 ◽  
pp. 1-7 ◽  
Author(s):  
Siti Hajar Noor ◽  
Koichiro Ushijima ◽  
Ayaka Murata ◽  
Kaori Yoshida ◽  
Miki Tanabe ◽  
...  

2021 ◽  
Vol 22 (17) ◽  
pp. 9362
Author(s):  
Lulu Ren ◽  
Hongwei Sun ◽  
Shengyue Dai ◽  
Shuang Feng ◽  
Kun Qiao ◽  
...  

Adonis amurensis is a perennial herbaceous flower that blooms in early spring in northeast China, where the night temperature can drop to −15 °C. To understand flowering time regulation and floral organogenesis of A. amurensis, the MIKCc-type MADS (Mcm1/Agamous/ Deficiens/Srf)-box genes were identified and characterized from the transcriptomes of the flower organs. In this study, 43 non-redundant MADS-box genes (38 MIKCc, 3 MIKC*, and 2 Mα) were identified. Phylogenetic and conserved motif analysis divided the 38 MIKCc-type genes into three major classes: ABCDE model (including AP1/FUL, AP3/PI, AG, STK, and SEPs/AGL6), suppressor of overexpression of constans1 (SOC1), and short vegetative phase (SVP). qPCR analysis showed that the ABCDE model genes were highly expressed mainly in flowers and differentially expressed in the different tissues of flower organs, suggesting that they may be involved in the flower organ identity of A. amurensis. Subcellular localization revealed that 17 full-length MADSs were mainly localized in the nucleus: in Arabidopsis, the heterologous expression of three full-length SOC1-type genes caused early flowering and altered the expression of endogenous flowering time genes. Our analyses provide an overall insight into MIKCc genes in A. amurensis and their potential roles in floral organogenesis and flowering time regulation.


2010 ◽  
Vol 18 (2) ◽  
pp. 109 ◽  
Author(s):  
Xue Haoyue ◽  
Xu Guixia ◽  
Guo Chunce ◽  
Shan Hongyan ◽  
Kong Hongzhi

2021 ◽  
pp. 1-15
Author(s):  
Yaqiong Wu ◽  
Chunhong Zhang ◽  
Wenlong Wu ◽  
Weilin Li ◽  
Lianfei Lyu

BACKGROUND: Black raspberry is a vital fruit crop with a high antioxidant function. MADS-box genes play an important role in the regulation of fruit development in angiosperms. OBJECTIVE: To understand the regulatory role of the MADS-box family, a total of 80 MADS-box genes were identified and analyzed. METHODS: The MADS-box genes in the black raspberry genome were analyzed using bioinformatics methods. Through an analysis of the promoter elements, the possible functions of different members of the family were predicted. The spatiotemporal expression patterns of members of the MADS-box family during black raspberry fruit development and ripening were systematically analyzed. RESULTS: The genes were classified into type I (Mα: 33; Mβ: 6; Mγ: 10) and type II (MIKC *: 2; MIKCC: 29) genes. We also obtained a complete overview of the RoMADS-box gene family through phylogenetic, gene structure, conserved motif, and cis element analyses. The relative expression analysis showed different expression patterns, and most RoMADS-box genes were more highly expressed in fruit than in other tissues of black raspberry. CONCLUSIONS: This finding indicates that the MADS-box gene family is involved in the regulation of fruit ripening processes in black raspberry.


2011 ◽  
Vol 10 (1) ◽  
pp. 28-40 ◽  
Author(s):  
Li-na WANG ◽  
Dong WU ◽  
Shu-xun YU ◽  
Shu-li FAN ◽  
Mei-zhen SONG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document