scholarly journals The Ablation of T1R1 Reduces Lipid Accumulation Through Reducing the De Novo Lipid Synthesis and Improving Lipid Metabolism in Mice

Author(s):  
Lu Ma ◽  
Xuekai Tian ◽  
Fengxue Xi ◽  
Yulin He ◽  
Dong Li ◽  
...  

Abstract Background: That cells sense extracellular amino acids to regulate intracellular lipid metabolism has been a heated debate in terms of the study on amino acid nutrition. T1R1 is a membrane G protein-coupled receptor that senses amino acids in a variety of cells. In our study, T1R1-KO mice was used to explore the function of umami taste receptor in lipid metabolism. Results: Compared with wild-type mice, T1R1-KO mice showed Significantly lighter adipose tissue weight, reduced serum triglycerides (TG) and total cholesterol (TC), as well as higher glucose tolerance on chow diet. Moreover, there were less lipid accumulation in adipose and liver tissue and shrink of the adipocyte size in T1R1-KO mice. And a decreased expression of lipogenesis genes (PPARγ, CEBPα, SREBP1) was found in both adipose and liver tissue. To further study the mechanism of T1R1 regulating liver lipid metabolism, proteomics analysis was introduced and the up-regulated proteins were enriched in lipid and steroid metabolism pathways of T1R1-KO mice. Further PRM verification analysis showed that the ablation of T1R1 reduced the de novo synthesis of lipids through BCKDHA and BCKDHB, and promoted lipid metabolism through CYP7B1 and IGFBP2. Conclusions: Our results showed that the disruption of T1R1 in mice could reduce body lipid accumulation, and our data clarifies the role of umami receptors in lipid metabolism and could provide a basis for the research on nutrition and obesity.

2013 ◽  
Vol 79 (23) ◽  
pp. 7360-7370 ◽  
Author(s):  
John Seip ◽  
Raymond Jackson ◽  
Hongxian He ◽  
Quinn Zhu ◽  
Seung-Pyo Hong

ABSTRACTIn the oleaginous yeastYarrowia lipolytica,de novolipid synthesis and accumulation are induced under conditions of nitrogen limitation (or a high carbon-to-nitrogen ratio). The regulatory pathway responsible for this induction has not been identified. Here we report that the SNF1 pathway plays a key role in the transition from the growth phase to the oleaginous phase inY. lipolytica. Strains with aY. lipolyticasnf1(Ylsnf1) deletion accumulated fatty acids constitutively at levels up to 2.6-fold higher than those of the wild type. When introduced into aY. lipolyticastrain engineered to produce omega-3 eicosapentaenoic acid (EPA),Ylsnf1deletion led to a 52% increase in EPA titers (7.6% of dry cell weight) over the control. Other components of theY. lipolyticaSNF1 pathway were also identified, and their function in limiting fatty acid accumulation is suggested by gene deletion analyses. Deletion of the gene encoding YlSnf4, YlGal83, or YlSak1 significantly increased lipid accumulation in both growth and oleaginous phases compared to the wild type. Furthermore, microarray and quantitative reverse transcription-PCR (qRT-PCR) analyses of theYlsnf1mutant identified significantly differentially expressed genes duringde novolipid synthesis and accumulation inY. lipolytica. Gene ontology analysis found that these genes were highly enriched with genes involved in lipid metabolism. This work presents a new role for Snf1/AMP-activated protein kinase (AMPK) pathways in lipid accumulation in this oleaginous yeast.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A950-A950
Author(s):  
Mara De Martino ◽  
Camille Daviaud ◽  
Claire Vanpouille-Box

BackgroundGlioblastoma (GBM) is the most aggressive and incurable adult brain tumor. Radiation therapy (RT) is an essential modality for GBM treatment and is recognized to stimulate anti-tumor immunity by inducing immunogenic cell death (ICD) subsequent to endoplasmic reticulum (ER) stress. However, RT also exacerbates potent immunosuppressive mechanisms that facilitate immune evasion. Notably, increased de novo lipid synthesis by the fatty acid synthase (FASN) is emerging as a mechanism of therapy resistance and immune escape. Here, we hypothesize that RT induces FASN to promote GBM survival and evade immune recognition by inhibiting ER stress and ICD.MethodsTo determine if lipid synthesis is altered in response to RT, we first assessed FASN expression by western blot (WB) and lipid accumulation by BODIPY staining in murine (CT2A and GL261) and human (U118) GBM cell lines. Next, FASN expression was blocked in CT2A cells using CRISPR-Cas9 or an inducible shRNA directed against Fasn to evaluate ICD and ER stress markers by ELISA, WB, and electron microscopy. Finally, CT2AshFASN cells or its non-silencing control (CT2AshNS) were orthotopically implanted and FASN knockdown was induced by feeding the mice with doxycycline. The immune contexture was determined by in situ immunofluorescence (n=3/group). Remaining mice were followed for survival (n=7/group).ResultsWe found that in vitro irradiation of GBM cells induces lipid accumulation in a dose-dependent fashion; an effect that is magnified over time lasting at least 6/7 days. Consistent with these findings, FASN expression was upregulated in irradiated GBM cells. Confirming the role of FASN, RT-induced accumulation of lipids was reverted when GBM cells were incubated with a FASN inhibitor. Next, we found that FASN ablation in CT2A cells induces mitochondria disruption and was sufficient to increase the expression of the ER stress makers BIP and CHOP. Along similar lines, shFASN enhances the secretion of the ICD markers HMGB1, IFN-beta and CXCL10 in irradiated CT2A cells. In vivo, CT2AshFASN tumors presented increased infiltration of CD11c+ cells and CD8+ T cells, consistent with prolonged mice survival (56 days vs. 28 days for CT2AshNS). Importantly, 43% of CT2AshFASN-bearing mice remained tumor-free for more than 70 days, while none of the CT2AshNS-bearing mice survived.ConclusionsAltogether, our data suggest that FASN-mediated lipid synthesis is an important mechanism to prevent ER stress, ICD, and anti-tumor immune responses in GBM. While much work remains to be done, our data propose FASN as a novel therapeutic target to overcome immunosuppression and sensitize GBM to immunotherapies.


1996 ◽  
Vol 271 (3) ◽  
pp. E521-E528 ◽  
Author(s):  
K. Nonogaki ◽  
X. M. Pan ◽  
A. H. Moser ◽  
J. Shigenaga ◽  
I. Staprans ◽  
...  

We determined the effects of leukemia inhibitory factor (LIF) and ciliary neurotrophic factor (CNTF) on lipid metabolism in intact rats. Administration of LIF and CNTF increased serum triglycerides in a dose-dependent manner with peak values at 2 h. The effects of LIF and CNTF on serum cholesterol were very small, and serum glucose was unaffected. Both LIF and CNTF stimulated hepatic triglyceride secretion, hepatic de novo fatty acid synthesis, and lipolysis. Pretreatment with phenylisopropyl adenosine, which inhibits lipolysis, partially inhibited LIF- and CNTF-induced hypertriglyceridemia. Interleukin-4, which inhibits cytokine-induced hepatic fatty acid synthesis, also partially inhibited LIF- and CNTF-induced hypertriglyceridemia. These results indicate that both lipolysis and de novo fatty acid synthesis play a role in providing fatty acids for the increase in hepatic triglyceride secretion. Neither indomethacin nor adrenergic receptor antagonists affected the hypertriglyceridemia. The combination of LIF plus CNTF showed no additive effects consistent with the action of both cytokines through the gp130 transduction system. Thus LIF and CNTF have similar effects on lipid metabolism; they join a growing list of cytokines that stimulate hepatic triglyceride secretion and may mediate the changes in lipid metabolism that accompany the acute phase response.


2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Ying Yang ◽  
Jiaxing He ◽  
Bo Zhang ◽  
Zhansheng Zhang ◽  
Guozhan Jia ◽  
...  

AbstractAbnormal lipid metabolism has been commonly observed in various human cancers, including colorectal cancer (CRC). The mitochondrial citrate carrier SLC25A1 (also known as mitochondrial citrate/isocitrate carrier, CIC), has been shown to play an important role in lipid metabolism regulation. Our bioinformatics analysis indicated that SLC25A1 was markedly upregulated in CRC. However, the role of SLC25A1 in the pathogenesis and aberrant lipid metabolism in CRC remain unexplored. Here, we found that SLC25A1 expression was significantly increased in tumor samples of CRC as compared with paired normal samples, which is associated with poor survival in patients with CRC. Knockdown of SLC25A1 significantly inhibited the growth of CRC cells by suppressing the progression of the G1/S cell cycle and inducing cell apoptosis both in vitro and in vivo, whereas SLC25A1 overexpression suppressed the malignant phenotype. Additionally, we demonstrated that SLC25A1 reprogrammed energy metabolism to promote CRC progression through two mechanisms. Under normal conditions, SLC25A1 increased de novo lipid synthesis to promote CRC growth. During metabolic stress, SLC25A1 increased oxidative phosphorylation (OXPHOS) to protect protects CRC cells from energy stress-induced cell apoptosis. Collectively, SLC25A1 plays a pivotal role in the promotion of CRC growth and survival by reprogramming energy metabolism. It could be exploited as a novel diagnostic marker and therapeutic target in CRC.


Life Sciences ◽  
2019 ◽  
Vol 232 ◽  
pp. 116644 ◽  
Author(s):  
Yunxia Dong ◽  
Henglei Lu ◽  
Qiang Li ◽  
Xinming Qi ◽  
Yuanchao Li ◽  
...  

2006 ◽  
Vol 18 (4) ◽  
pp. 425 ◽  
Author(s):  
Verónica White ◽  
Elida González ◽  
Evangelina Capobianco ◽  
Carolina Pustovrh ◽  
Nora Martínez ◽  
...  

Leptin has significant effects on appetite, energy expenditure, lipid mobilisation and reproduction. During pregnancy, leptin is produced in the placenta, a tissue in which leptin receptors are highly expressed, suggesting autocrine/paracrine functions for this hormone. In the present study, a putative role of leptin as a regulator of nitric oxide (NO) production and lipid metabolism was evaluated in term human placenta. We demonstrated that leptin enhanced NO production in human placental explants (P < 0.01). Although leptin did not modify the placental levels of cholesteryl esters and phospholipids, leptin decreased levels of triglycerides (P < 0.01) and cholesterol (P < 0.001) in term human placenta. The effect of leptin on lipid mass seems to be independent of the modulation of de novo lipid synthesis because leptin did not modify the incorporation of 14C-acetate into any of the lipids evaluated. We investigated the effects of leptin on placental lipid catabolism and found that in both term human placental explants and primary cultures of trophoblastic cells, leptin increased glycerol release, an index of the hydrolysis of esterified lipids, in a dose-dependent manner. In conclusion, we have shown that leptin affects NO production and lipid catabolism in human placenta, providing supportive evidence for a role of leptin in placental functions that would determine the transfer of nutrients to the developing fetus.


2004 ◽  
Vol 16 (3) ◽  
pp. 363 ◽  
Author(s):  
Verónica White ◽  
Elida González ◽  
Evangelina Capobianco ◽  
Carolina Pustovrh ◽  
Carlos Soñez ◽  
...  

Leptin production by placental tissues contributes to its circulating levels and functions. The diabetic pathology induces alterations in leptin levels. In the present study, leptin levels were evaluated in placental tissue from control and neonatal streptozotocin-induced (n-STZ) diabetic rats during late gestation. The effects of leptin levels on the generation of nitric oxide (NO), prostaglandin (PG) E2 production and lipid metabolism were examined. Leptin levels were diminished in placentas from n-STZ diabetic rats compared with controls (P < 0.01). These differences were also evident when leptin was evaluated immunohistochemically. Addition of leptin (1 nm) in vitro enhanced NO production in control (66%) and diabetic placentas (134%) by stimulating NO synthase activity (by 38% and 54%, respectively). The addition of leptin increased PGE2 production in placentas from control (173%) and diabetic rats (83%) and produced a 50% decrease in placental lipid levels (phospholipids, triacylglycerides, cholesterol and cholesteryl ester) without involving a reduction in de novo lipid synthesis. These data indicate that leptin enhances the production of placental NO and PGE2, vasoactive agents that modify placental blood flow, and that leptin stimulates placental lipid metabolism, probably generating more lipids for transfer to the fetus. In the diabetic rat, placental leptin was reduced, probably as a response to the maternal environment to locally regulate the transfer of nutrients to the developing fetus.


2015 ◽  
Vol 100 (8) ◽  
pp. E1125-E1132 ◽  
Author(s):  
Nicola Santoro ◽  
Sonia Caprio ◽  
Bridget Pierpont ◽  
Michelle Van Name ◽  
Mary Savoye ◽  
...  

Objective: This study's aim was to evaluate whether the GCKR rs1260326 variant increases hepatic de novo lipogenesis (DNL). Setting and Design: To test this hypothesis, 14 adolescents, seven homozygous for the common allele (CC) and seven homozygous for the risk allele (TT), underwent measurement of hepatic DNL during the fasting state and after consumption of a carbohydrate (CHO) drink (75 g glucose and 25 g fructose). DNL was assessed through incorporation of deuterium in the palmitate contained in the very low-density lipoprotein. Results: Subjects with TT demonstrated higher fasting fractional DNL (P = .036) and a lower increase in fractional DNL after the CHO challenge (P = .016). With regard to absolute lipogenesis, TT subjects had both higher fasting rates (P = .015) and 44% greater area under the curve of absolute lipogenesis during the study (P = .016), compared to CC subjects. Furthermore, subjects carrying the TT genotype showed higher basal rates of glucose oxidation (P = .0028) and a lower ability than CC subjects to increase the rates of glucose oxidation after the CHO load (P = .054). Conclusions: This study reports for the first time rates of DNL in obese adolescents and suggests that the GCKR rs1260326 gene variant, which is associated with greater glycolysis, increases hepatic DNL. These data highlight the role of glycolytic carbon flux in liver lipid synthesis and hypertriglyceridemia in these youngsters.


Sign in / Sign up

Export Citation Format

Share Document