scholarly journals Self-Assembly of Silver Clusters into One- and Two-Dimensional Structures as Artificial Intelligent Sensors of Alcohol

Author(s):  
Gao Li ◽  
Zhaoxian Qin ◽  
Sachil Sharma ◽  
Yongwu Peng

Abstract Reggeization and response to external stimulus is an important part of artificial intelligence, which would significantly improve the quality of life in the future. The development of new materials for the design of sensitive and responsive sensors has become a crucial component. Here, two silver cluster-based polymers (Ag-CBPs), including one-dimensional (1D) {Ag22(L1)8(CF3CO2)14(CH3OH)2}n chain and two-dimensional (2D) {[Ag12(L2)2(CO2CF3)14(H2O)4(AgCO2CF3)4](HNEt3)2}n film, are designed and used to simulate the human nose - an elegant sensor to smells, to distinguish organic solvents. We study the relationship between the atomic structures of Ag-CBPs determined by X-ray diffraction and electrical properties in the presence of organic solvents (e.g. methanol, ethanol). The ligands, cations and the ligated solvent molecules not only play an important role in the self-assembly process of Ag-CBP materials, but also determine their physiochemical properties. An application of cluster-based polymers is demonstrated in the artificial intelligent sensors.

2009 ◽  
Vol 65 (3) ◽  
pp. m139-m142 ◽  
Author(s):  
Rajesh Koner ◽  
Israel Goldberg

The title compound, (5,10,15,20-tetra-4-pyridylporphyrinato)zinc(II) 1,2-dichlorobenzene disolvate, [Zn(C40H24N8)]·2C6H4Cl2, contains a clathrate-type structure. It is composed of two-dimensional square-grid coordination networks of the self-assembled porphyrin moiety, which are stacked one on top of the other in a parallel manner. The interporphyrin cavities of the overlapping networks combine into channel voids accommodated by the dichlorobenzene solvent. Molecules of the porphyrin complex are located on crystallographic inversion centres. The observed two-dimensional assembly mode of the porphyrin units represents a supramolecular isomer of the unique three-dimensional coordination frameworks of the same porphyrin building block observed earlier. The significance of this study lies in the discovery of an additional supramolecular isomer of the rarely observed structures of metalloporphyrins self-assembled directly into extended coordination polymers without the use of external ligand or metal ion auxiliaries.


2020 ◽  
Vol 76 (7) ◽  
pp. 695-705
Author(s):  
Aristyo Soecipto ◽  
Lawrence W.-Y. Wong ◽  
Herman H.-Y. Sung ◽  
Ian D. Williams

The spiroborate anion, namely, 2,3,7,8-tetracarboxamido-1,4,6,9-tetraoxa-5λ4-boraspiro[4.4]nonane, [B(TarNH2)2]−, derived from the diol L-tartramide TarNH2, [CH(O)(CONH2)]2, shows a novel self-assembly into two-dimensional (2D) layer structures in its salts with alkylammonium cations, [NR 4]+ (R = Et, Pr and Bu), and sparteinium, [HSpa]+, in which the cations and anions are segregated. The structures of four such salts are reported, namely, the tetrapropylazanium salt, C12H28N+·C8H12BN4O8 −, the tetraethylazanium salt hydrate, C8H20N+·C8H12BN4O8 −·6.375H2O, the tetrabutylazanium salt as the ethanol monosolvate hemihydrate, C16H36N+·C8H12BN4O8 −·C2H5OH·0.5H2O, and the sparteinium (7-aza-15-azoniatetracyclo[7.7.1.02,7.010,15]heptadecane) salt as the ethanol monosolvate, C15H27N2 +·C8H12BN4O8 −·C2H5OH. The 2D anion layers have preserved intermolecular hydrogen bonding between the amide groups and a typical metric repeat of around 10 × 15 Å. The constraint of matching the interfacial area organizes the cations into quite different solvated arrangements, i.e. the [NEt4] salt is highly hydrated with around 6.5H2O per cation, the [NPr4] salt apparently has a good metric match to the anion layer and is unsolvated, whilst the [NBu4] salt is intermediate and has EtOH and H2O in its cation layer, which is similar to the arrangement for the chiral [HSpa]+ cation. This family of salts shows highly organized chiral space and offers potential for the resolution of both chiral cations and neutral chiral solvent molecules.


2011 ◽  
Vol 115 (32) ◽  
pp. 9703-9709 ◽  
Author(s):  
Michal T. Usowicz ◽  
Michael J. Kelley ◽  
Kenneth D. Singer ◽  
Volodimyr V. Duzhko

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3310
Author(s):  
Shengda Liu ◽  
Jiayun Xu ◽  
Xiumei Li ◽  
Tengfei Yan ◽  
Shuangjiang Yu ◽  
...  

In the past few decades, enormous efforts have been made to synthesize covalent polymer nano/microstructured materials with specific morphologies, due to the relationship between their structures and functions. Up to now, the formation of most of these structures often requires either templates or preorganization in order to construct a specific structure before, and then the subsequent removal of previous templates to form a desired structure, on account of the lack of “self-error-correcting” properties of reversible interactions in polymers. The above processes are time-consuming and tedious. A template-free, self-assembled strategy as a “bottom-up” route to fabricate well-defined nano/microstructures remains a challenge. Herein, we introduce the recent progress in template-free, self-assembled nano/microstructures formed by covalent two-dimensional (2D) polymers, such as polymer capsules, polymer films, polymer tubes and polymer rings.


2016 ◽  
Vol 72 (6) ◽  
pp. 480-484 ◽  
Author(s):  
Qiu-Ying Huang ◽  
Xiao-Yi Lin ◽  
Xiang-Ru Meng

The N-heterocyclic ligand 2-[(1H-imidazol-1-yl)methyl]-1H-benzimidazole (imb) has a rich variety of coordination modes and can lead to polymers with intriguing structures and interesting properties. In the coordination polymercatena-poly[[cadmium(II)-bis[μ-benzene-1,2-dicarboxylato-κ4O1,O1′:O2,O2′]-cadmium(II)-bis{μ-2-[(1H-imidazol-1-yl)methyl]-1H-benzimidazole}-κ2N2:N3;κ2N3:N2] dimethylformamide disolvate], {[Cd(C8H4O4)(C11H10N4)]·C3H7NO}n, (I), each CdIIion exhibits an irregular octahedral CdO4N2coordination geometry and is coordinated by four O atoms from two symmetry-related benzene-1,2-dicarboxylate (1,2-bdic2−) ligands and two N atoms from two symmetry-related imb ligands. Two CdIIions are connected by two benzene-1,2-dicarboxylate ligands to generate a binuclear [Cd2(1,2-bdic)2] unit. The binuclear units are further connected into a one-dimensional chain by pairs of bridging imb ligands. These one-dimensional chains are further connected through N—H...O hydrogen bonds and π–π interactions, leading to a two-dimensional layered structure. The dimethylformamide solvent molecules are organized in dimeric pairsviaweak interactions. In addition, the title polymer exhibits good fluorescence properties in the solid state at room temperature.


2019 ◽  
Vol 58 (30) ◽  
pp. 10173-10178 ◽  
Author(s):  
Hao Tian ◽  
Jieqiong Qin ◽  
Dan Hou ◽  
Qian Li ◽  
Chen Li ◽  
...  

2007 ◽  
Vol 204 (6) ◽  
pp. 1856-1862 ◽  
Author(s):  
Ching-Ling Hsu ◽  
Szu-Ming Chu ◽  
Kiwi Wood ◽  
Yi-Rong Yang

2017 ◽  
Vol 29 (4) ◽  
pp. 1632-1640 ◽  
Author(s):  
Kathleen Maleski ◽  
Vadym N. Mochalin ◽  
Yury Gogotsi

2014 ◽  
Vol 70 (2) ◽  
pp. m35-m35
Author(s):  
Jing-Wei Dai ◽  
Zhao-Yang Li ◽  
Osamu Sato

In the title complex, [Fe(NCS)2(C18H18N4)], the FeIIcation is chelated by a tris(2-pyridylmethyl)amine ligand and coordinated by two thiocyanate anions in a distorted N6octahedral geometry. In the crystal, weak C—H...S hydrogen bonds and π–π stacking interactions between parallel pyridine rings of adjacent molecules [centroid–centroid distance = 3.653 (3) Å] link the molecules into a two-dimensional supramolecular architecture. The structure contains voids of 124 (9) Å3, which are free of solvent molecules.


Sign in / Sign up

Export Citation Format

Share Document