scholarly journals Cloning and Expression of the EsxA Gene and Analysis of the Growth-Promoting Effects of the Encoded Protein on Rice Seedlings

2020 ◽  
Author(s):  
Wen Qing Yu ◽  
Xin Wang ◽  
Yi Cong Tang ◽  
Feng Chao Yan ◽  
Wen Zhi Liu ◽  
...  

Abstract An EsxA-encoding gene was previously identified in the genome of the plant growth-promoting rhizobacterium Paenibacillus terrae strain NK3-4. The EsxA gene was cloned and expressed in Pichia pastoris , after which the effects of the EsxA protein on rice seedling growth were analyzed to determine whether EsxA contributes to the plant growth-promoting activity of strain NK3-4. The EsxA gene was successfully cloned from the NK3-4 genome and ligated to the eukaryotic expression vector pPICZαA. The resulting pPICZαA- EsxA recombinant plasmid was inserted into P. pastoris cells, and EsxA gene expression in the yeast cells was confirmed. The treatment of seed- buds with the EsxA protein increased the root length by 1.35-times, but decreased the bud length. Additionally, in rice seedlings treated with EsxA, the root and shoot lengths increased by 2.6- and 1.7-times, respectively. These findings imply that EsxA is important for the promotion of rice plant growth by P. terrae strain NK3-4. Furthermore, the construction of the EsxA gene expression vector and the engineered strain may be useful for future investigations of the mechanism underlying the plant growth-promoting effects of EsxA, with implications for the application of EsxA for regulating plant growth.

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wen-qing Yu ◽  
Xin Wang ◽  
Yi-cong Tang ◽  
Feng-chao Yan ◽  
Wen-zhi Liu ◽  
...  

AbstractAn EsxA-encoding gene (esxA) was previously identified in the genome of the plant growth-promoting rhizobacterium Paenibacillus terrae strain NK3-4. The esxA was cloned and expressed in Pichia pastoris, after which the effects of the EsxA protein on rice seedling growth were analyzed to determine whether EsxA contributes to the plant growth-promoting activity of strain NK3-4. The esxA was successfully cloned from the NK3-4 genome and ligated to the eukaryotic expression vector pPICZαA. The resulting pPICZαA-esxA recombinant plasmid was transinfected into yeast cells, and esxA expression in the yeast cells was confirmed. The treatment of seed- buds with the EsxA protein increased the root length by 1.35-times, but decreased the bud length. Additionally, in rice seedlings treated with EsxA, the root and shoot lengths increased by 2.6- and 1.7-times, respectively. These findings imply that EsxA is important for the promotion of rice plant growth by P. terrae strain NK3-4. Furthermore, the construction of the esxA expression vector and the engineered strain may be useful for future investigations of the mechanism underlying the plant growth-promoting effects of EsxA, with implications for the application of EsxA for regulating plant growth.


2019 ◽  
Vol 20 (12) ◽  
Author(s):  
Haliatur Rahma ◽  
NURBAILIS ◽  
NILA KRISTINA

Abstract. Rahma H, Nurbailis, Kristina N. 2019. Characterization and potential of plant growth-promoting rhizobacteria on rice seedling growth and the effect on Xanthomonas oryzae pv. oryzae. Biodiversitas 20: 3654-3661. Xanthomonas oryzae pv. oryzae (Xoo), a major limiting factor in rice production, and the use of resistant Xoo varieties have failed to control the bacterial pathogens as well as increased yield. It is due to the diversity in pathotypes, caused by environmental factors, the nature of resistant variety used, and gene mutation. The aims of this study were to select rhizobacterial strains with the potential of suppressing Xoo growth and promoting the growth of rice seedlings. This experiment was conducted in a completely randomized design (CRD) using seven rhizobacterial isolates selected through a dual culture test, with four replications. There were four isolates that potential in inhibiting the growth of Xoo, namely KJKB5.4, LMTSA5.4, Bacillus cereus AJ34, and Alcaligenes faecalis AJ14, with inhibition diameters greater than 11.50 mm. Rhizobacterial supernatant of 4 potential isolates has a zone of inhibition ranging from 12.25 to 24.00 mm. Four potential isolates were also able to solubilize phosphate, produce indole acetic acid (IAA) growth hormone, and siderophore, as well as enhance the growth of rice seedlings. Based on the nucleic acid sequencing of LMTSA5.4, KJKB5.4, and RK12 isolates were identified as Stenotrophomonas malthopilia strain LMG 958 (99.13%) accession NR 119220.1, Stenotrophomonas pavanii strain LMG 25348 (95.84%) accession NR 118008.1 and Ochrobactrum ciceri strain ca-34 (92.91%) accession NR115819.1.


2009 ◽  
Vol 33 (5) ◽  
pp. 1227-1235 ◽  
Author(s):  
Luciano Kayser Vargas ◽  
Bruno Brito Lisboa ◽  
Gilson Schlindwein ◽  
Camille Eichelberger Granada ◽  
Adriana Giongo ◽  
...  

In the last decades, the use of plant growth-promoting rhizobacteria has become an alternative to improve crop production. Rhizobium leguminosarum biovar trifolii is one of the most promising rhizobacteria and is even used with non-legume plants. This study investigated in vitro the occurrence of plant growth-promoting characteristics in several indigenous R. leguminosarum biovar trifolii isolated from soils in the State of Rio Grande do Sul, Brazil. Isolates were obtained at 11 locations and evaluated for indoleacetic acid and siderophore production and inorganic phosphate solubilization. Ten isolates were also molecularly characterized and tested for antagonism against a phytopathogenic fungus and for plant growth promotion of rice seedlings. Of a total of 252 isolates, 59 produced indoleacetic acid, 20 produced siderophores and 107 solubilized phosphate. Some degree of antagonism against Verticillium sp. was observed in all tested isolates, reducing mycelial growth in culture broth. Isolate AGR-3 stood out for increasing root length of rice seedlings, while isolate ELD-18, besides increasing root length in comparison to the uninoculated control, also increased the germination speed index, shoot length, and seedling dry weight. These results confirm the potential of some strains of R. leguminosarum biovar trifolii as plant growth-promoting rhizobacteria.


Microbiology ◽  
2014 ◽  
Vol 160 (4) ◽  
pp. 778-788 ◽  
Author(s):  
Rahul Jog ◽  
Maharshi Pandya ◽  
G. Nareshkumar ◽  
Shalini Rajkumar

The application of plant-growth-promoting rhizobacteria (PGPR) at field scale has been hindered by an inadequate understanding of the mechanisms that enhance plant growth, rhizosphere incompetence and the inability of bacterial strains to thrive in different soil types and environmental conditions. Actinobacteria with their sporulation, nutrient cycling, root colonization, bio-control and other plant-growth-promoting activities could be potential field bio-inoculants. We report the isolation of five rhizospheric and two root endophytic actinobacteria from Triticum aestivum (wheat) plants. The cultures exhibited plant-growth-promoting activities, namely phosphate solubilization (1916 mg l−1), phytase (0.68 U ml−1), chitinase (6.2 U ml−1), indole-3-acetic acid (136.5 mg l−1) and siderophore (47.4 mg l−1) production, as well as utilizing all the rhizospheric sugars under test. Malate (50–55 mmol l−1) was estimated in the culture supernatant of the highest phosphate solublizer, Streptomyces mhcr0816. The mechanism of malate overproduction was studied by gene expression and assays of key glyoxalate cycle enzymes – isocitrate dehydrogenase (IDH), isocitrate lyase (ICL) and malate synthase (MS). The significant increase in gene expression (ICL fourfold, MS sixfold) and enzyme activity (ICL fourfold, MS tenfold) of ICL and MS during stationary phase resulted in malate production as indicated by lowered pH (2.9) and HPLC analysis (retention time 13.1 min). Similarly, the secondary metabolites for chitinase-independent biocontrol activity of Streptomyces mhcr0817, as identified by GC-MS and 1H-NMR spectra, were isoforms of pyrrole derivatives. The inoculation of actinobacterial isolate mhce0811 in T. aestivum (wheat) significantly improved plant growth, biomass (33 %) and mineral (Fe, Mn, P) content in non-axenic conditions. Thus the actinobacterial isolates reported here were efficient PGPR possessing significant antifungal activity and may have potential field applications.


Symbiosis ◽  
2014 ◽  
Vol 62 (1) ◽  
pp. 41-50 ◽  
Author(s):  
Fernanda Plucani do Amaral ◽  
Jessica Cavalheiro Ferreira Bueno ◽  
Vanessa Stahl Hermes ◽  
Ana Carolina Maisonnave Arisi

Sign in / Sign up

Export Citation Format

Share Document