scholarly journals Assessment of Biosafety and Implantation Feasibility of Novel Phakic Refractive Lens

Author(s):  
Shaohua Zhang ◽  
Chang Huang ◽  
Huamao Miao ◽  
Junyao Wu ◽  
Chao Xing ◽  
...  

Abstract Purpose: To investigate the biosafety and implantation feasibility of newly developed phakic refractive lens (PRL) in rabbit eyes. Methods: The PRLs, including short PRL (S-PRL), large PRL (L-PRL), and large grooved PRL (LG-PRL), were prepared by molding liquid medical silicon. The in vitro cytotoxicity of the above PRLs was evaluated by incubating them with human lens epithelial cells (HLECs) and then measuring cell viability by CCK-8 assay. In vitro cell adhesion of PRLs was assessed by culturing HLECs on PRL film surface and calculating the cell number and average cell area after stained with Calcein-AM and fluorescent. The implantation feasibility was appraised by observing the relative positions of S-PRL, L-PRL or LG-PRL implanted in the posterior chamber of rabbit eyes by optical coherence tomography, and calculating their retention ratio postoperatively. The intraocular pressure (IOP) of S-PRL, L-PRL, LG-PRL and control groups of rabbit eyes was compared to evaluate the biosafety of implantation.Results: The results of in vitro cytotoxicity showed no significant difference of cell viability was observed in the S-PRL, L-PRL or LG-PRL groups compared to the control group throughout the whole experiment. The HLECs cultured on the PRL film surface presented similar cell number, but smaller average cell area (53.8% vs 100%) when compared to the control group, which implied obvious adhesion inhibition on HLECs caused by PRL film. After implantation of S-PRL, L-PRL or LG-PRL into the posterior chamber of rabbit eyes, no obvious inflammation and IOP elevation were observed at each time point in all sample groups compared to the control group, which indicated that PRL samples had good implantation biosafety. Most of the implanted L-PRL and LG-PRL kept in the correct location, while only less of the S-PRL was at the right site. That was, L-PRL and LG-PRL had proper relative position and high retention ratio in the posterior chamber of rabbit eyes. L-PRL and S-PRL samples tended to attach to iris surface, while LG-PRL sample constructed enough space on the iris surface by its grooves surrounding the central optical zone, which was conducive to circulation of aqueous humor.Conclusions: The newly developed LG-PRL sample presented good biosafety in terms of the negligible in vitro cytotoxicity, ocular inflammation and IOP fluctuations. The LG-PRL provided the best implantation feasibility due to the more proper relative position, available space for aqueous humor circulation, and high retention ratio in the posterior chamber of rabbit eyes among the three kinds of PRL samples. Thus, LG-PRL is a promising alternative with appropriate size and surface structure to more effectively correct refractive errors.

Zygote ◽  
2016 ◽  
Vol 24 (6) ◽  
pp. 890-899 ◽  
Author(s):  
A.L.S. Guimarães ◽  
S.A. Pereira ◽  
M. N. Diógenes ◽  
M.A.N. Dode

SummaryThe aim of this study was to evaluate the effect of adding a combination of insulin, transferrin and selenium (ITS) and l-ascorbic acid (AA) during in vitro maturation (IVM) and in vitro culture (IVC) on in vitro embryo production. To verify the effect of the supplements, cleavage and blastocyst rates, embryo size and total cell number were performed. Embryonic development data, embryo size categorization and kinetics of maturation were analyzed by chi-squared test, while the total cell number was analyzed by a Kruskal–Wallis test (P < 0.05). When ITS was present during IVM, IVC or the entire culture, all treatments had a cleavage and blastocyst rates and embryo quality, similar to those of the control group (P < 0.05). Supplementation of IVM medium with ITS and AA for 12 h or 24 h showed that the last 12 h increased embryo production (51.6%; n = 220) on D7 compared with the control (39.5%; n = 213). However, no improvement was observed in blastocyst rate when less competent oocytes, obtained from 1–3 mm follicles, were exposed to ITS + AA for the last 12 h of IVM, with a blastocyst rate of 14.9% (n = 47) compared with 61.0% (n = 141) in the control group. The results suggest that the addition of ITS alone did not affect embryo production; however, when combined with AA in the last 12 h of maturation, there was improvement in the quantity and quality of embryos produced. Furthermore, the use of ITS and AA during IVM did not improve the competence of oocytes obtained from small follicles.


2018 ◽  
Vol 9 (4) ◽  
pp. 59 ◽  
Author(s):  
Ryan Newell ◽  
Zi Wang ◽  
Isabel Arias ◽  
Abhishek Mehta ◽  
Yongho Sohn ◽  
...  

Transition metal multi-principal element alloys (MPEAs) are novel alloys that may offer enhanced surface and mechanical properties compared with commercial metallic alloys. However, their biocompatibility has not been investigated. In this study, three CoCrFeNi-based MPEAs were fabricated, and the in vitro cytotoxicity was evaluated in direct contact with fibroblasts for 168 h. The cell viability and cell number were assessed at 24, 96, and 168 h using LIVE/DEAD assay and alamarBlue assay, respectively. All MPEA sample wells had a high percentage of viable cells at each time point. The two quaternary MPEAs demonstrated a similar cell response to stainless steel control with the alamarBlue assay, while the quinary MPEA with Mn had a lower cell number after 168 h. Fibroblasts cultured with the MPEA samples demonstrated a consistent elongated morphology, while those cultured with the Ni control samples demonstrated changes in cell morphology after 24 h. No significant surface corrosion was observed on the MPEAs or stainless steel samples following the cell culture, while the Ni control samples had extensive corrosion. The cell growth and viability results demonstrate the cytocompatibility of the MPEAs. The biocompatibility of MPEAs should be investigated further to determine if MPEAs may be utilized in orthopedic implants and other biomedical applications.


Zygote ◽  
2009 ◽  
Vol 17 (1) ◽  
pp. 57-61 ◽  
Author(s):  
M. Popelková ◽  
Z. Turanová ◽  
L. Koprdová ◽  
A. Ostró ◽  
S. Toporcerová ◽  
...  

SummaryThe aim of the study was to determine the efficiency of two vitrification techniques followed by two assisted hatching (AH) techniques based on post-thaw developmental capacity of precompacted rabbit embryos and their ability to leave the zona pellucida (hatching) during in vitro culture. The total cell number and embryo diameter as additional markers of embryo quality after warming were evaluated. In vivo fertilized, in vitro cultured 8–12-cell rabbit embryos obtained from superovulated rabbit does were cryopreserved by two-step vitrification method using ethylene glycol (EG) as cryoprotectant or by one-step vitrification method with EG and Ficoll (EG+Ficoll). Thawed embryos were subjected to enzymatic or mechanical AH. Vitrified EG group showed significantly lower (P < 0.05) blastocyst rate (22.5%) and hatching rate (15%) than those vitrified with EG + Ficoll (63 and 63% resp.) and that of control (97 and 97% respectively). Significantly lower values of total cell number (P < 0.05) as well as embryo diameter (P < 0.01) in EG group compared with EG + Ficoll and control group were recorded. No significant difference was found in developmental potential of warmed embryos treated by either mechanical or enzymatic AH. The present study demonstrates that the EG + Ficoll vitrification protocol provides superior embryo survival rates over the EG vitrification protocol for 8–12-cell stage precompacted rabbit embryos. No positive effect of either mechanical or enzymatic AH on the post-thaw viability and quality of rabbit embryos in vitro was observed.


Author(s):  
Yuzhao Huang ◽  
Yuchen He ◽  
Meagan J. Makarcyzk ◽  
Hang Lin

Autologous chondrocyte implantation (ACI) is a procedure used to treat articular cartilage injuries and prevent the onset of post-traumatic osteoarthritis. In vitro expansion of chondrocytes, a necessary step in ACI, results in the generation of senescent cells that adversely affect the quality and quantity of newly formed cartilage. Recently, a senolytic peptide, fork head box O transcription factor 4-D-Retro-Inverso (FOXO4-DRI), was reported to selectively kill the senescent fibroblasts. In this study, we hypothesized that FOXO4-DRI treatment could remove the senescent cells in the expanded chondrocytes, thus enhancing their potential in generating high-quality cartilage. To simulate the in vitro expansion for ACI, chondrocytes isolated from healthy donors were expanded to population doubling level (PDL) 9, representing chondrocytes ready for implantation. Cells at PDL3 were also used to serve as the minimally expanded control. Results showed that the treatment of FOXO4-DRI removed more than half of the cells in PDL9 but did not significantly affect the cell number of PDL3 chondrocytes. Compared to the untreated control, the senescence level in FOXO4-DRI treated PDL9 chondrocytes was significantly reduced. Based on the result from standard pellet culture, FOXO4-DRI pre-treatment did not enhance the chondrogenic potential of PDL9 chondrocytes. However, the cartilage tissue generated from FOXO4-DRI pretreated PDL9 cells displayed lower expression of senescence-relevant secretory factors than that from the untreated control group. Taken together, FOXO4-DRI is able to remove the senescent cells in PDL9 chondrocytes, but its utility in promoting cartilage formation from the in vitro expanded chondrocytes needs further investigation.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 327-328
Author(s):  
Galina Singina

Abstract The oocyte quality acquired during in vitro maturation (IVM) are the main limitative factors affecting the embryo production. The aim of the present research was to study effects of fibroblast growth factor 2 (FGF2) and insulin-like growth factor 1 (IGF1) during IVM of bovine oocytes on their developmental potential after parthenogenetic activation. Bovine cumulus-oocyte complexes (COC; n = 1176) were cultured for 22h in either standard maturation medium (TCM-199 supplemented with 10% fetal calf serum (FCS), 0.2 mM sodium pyruvate, 10 μg/ml FSH and 10 μg/ml LH; Control) or maturation medium supplemented with different concentrations (5–160 ng/ml) of FGF2 and IGF1. After IVM, matured oocytes activated by sequential treatment with ionomycin followed by DMAP and cyclohexamide and then cultured up to the blastocyst stage. The obtained blastocysts were fixed, and the total cell number and the level of apoptosis were determined using DAPI and TUNEL staining. The data from 4 replicates (77–91 oocytes per treatment) were analyzed by ANOVA. Cleavage rates of activated oocytes did not differ between groups and ranged from 63.7 to 68.1%. The addition of 10, 20 and 40 ng/ml of FGF2 to the IVM medium led to an increase in the yield of blastocysts [from 19.6±1.8% (Control) to 35.2±3.4, 29.8±1.9 and 31.1±2.1%, respectively (P&lt;0.05)] and in the total cell number in embryos that developed to the blastocyst stage (P&lt;0.05). Meanwhile, the blastocyst yield and the total cell number in blastocysts in the IGF1-treated groups were similar to that in the control group. No effects of both growth factors on the proportion of apoptotic nuclei in blastocysts (5.3–7.1%) were observed. Thus, FGF2 (but not IGF1) are able to maintain competence for parthenogenetic development of bovine COC during their maturation invitro. Supported by RFBR (18-29-07089) and the Ministry of Science and Higher Education of Russia.


2006 ◽  
Vol 18 (2) ◽  
pp. 250
Author(s):  
M. G. Marques ◽  
A. B. Nascimento ◽  
V. P. Oliveira ◽  
A. R. S. Coutinho ◽  
M. E. O. A. Assumpção ◽  
...  

The present work evaluated the reversible meiosis inhibition effect on the development of swine embryos produced by in vitro fertilization (IVF) or parthenogenetic activation (PA). The efficiency of PZM3 and NCSU23 embryo culture media was also evaluated. Oocytes from ovaries collected at a slaughterhouse were subjected to IVM in two different groups: CHX (cycloheximide 5 µM for 10 h) and control, both with TCM-199 + 3.05 mM glucose + 0.91 mM sodium pyruvate + 10% porcine follicular fluid (pFF) + 0.57 mM cystein + 10 ng epidermal growth factor (EGF)/mL + 10 IU eCG/mL + 10 IU hCG/mL for the initial 22 h. In the remaining period (20 h for CHX and 22 h for control), medium without hormones was utilized. After IVM, oocytes were denuded and fertilized for 6 h (IFV) or the matured oocytes were submitted to activation by electric pulses (PA) (2 DC of 1.5 kV/cm for 30 µs), incubated for 1 h in culture medium with 10 μM of CHX, and again submitted to the same electric pulses for 60 µs. Embryo development was evaluated by cleavage rate on Day 3 and blastocyst rate and blastocyst cell number on Day 7 of culture. Cleavage and blastocyst rates were analyzed by the equality-of-two-ratios test and cell number by the Kruskal-Wallis and Mann-Whitney tests (P < 0.05). In relation to IVF, the PZM3 medium was more efficient than NCSU23 for cleavage rate in the CHX group (PZM3: 68.4%, NCSU23: 44.4%) and had a better blastocyst rate in the control group (PZM3: 13.4%, NCSU23: 5.6%). With reference to PA, NCSU23 presented better cleavage and blastocyst rates than PZM3 in the CHX group (NCSU23: 89.5%, PZM3: 78.5% and NCSU23: 20.4%, PZM3: 13.0%, respectively). In the control group, only the NCSU23 blastocyst rate was higher than that for PZM3 (NCSU23: 22.5%, PZM3: 10.8%). No culture medium effect on cell number mean of IVF and PA blastocysts was observed. Maturation block improved cleavage rates in IVF groups cultured with PZM3 (68.4% and 50.6%, respectively, for CHX and control) and in PA groups cultured with NCSU23 (89.5% and 80.3%, respectively, for CHX and control), but no improvement of blastocyst rates in both groups (IVF and PA) was verified. Table 1 below shows that maturation block decreased the IVF and increased the PA blastocyst cell numbers. As older oocytes are more effectively activated, oocytes blocked with CHX achieved the maturation stage faster than the control group, therefore resulting in high-quality PA blastocysts. In conclusion, PZM3 was more efficient for IVF embryo production in contrast to NCSU23, whereas NCSU23 can be indicated for PA embryo production. Moreover, maturation blockage with CHX influenced blastocyst cell number, decreasing in IVF embryos and increasing in PA embryos. Table 1. Mean (±SD) of blastocyst cell numbers for IVF or PA groups after in vitro maturation without (control) or with cycloheximide (CHX) and cultured in NCSU23 or PZM3 medium This work was supported by FAPESP 02/10747–1.


2009 ◽  
Vol 21 (1) ◽  
pp. 148
Author(s):  
D. N. Q. Thanh ◽  
K. Matsukawa ◽  
M. Kaneda ◽  
S. Akagi ◽  
Y. Kanai ◽  
...  

In the mouse, single blastomeres of the 2-cell embryos can develop into adult mice and occasionally both separated blastomeres can give rise to twin animals (reviewed by Tarkowski AK et al. 2001 Int. J. Dev. Biol. 45, 591–596). As a preliminary study for production of monozygotic twins from porcine 2-cell embryos, we investigated the effects of removal of zona pellucida and blastomere isolation at the 2-cell stage on subsequent development of parthenogenetic embryos. Oocytes with the first polar body were parthenogenetically activated after 44 h of in vitro maturation. Stimulated oocytes were then incubated in IVC-PyrLac (IVC medium with pyruvate and lactose) according to the method reported by Kikuchi K et al. (2002 Biol. Reprod. 66, 1033–1041). After 24 to 30 h of parthenogenetic activation, equally cleaved 2-cell embryos were selected and used for the experiments. Some 2-cell embryos were then treated with pronase to remove the zona pellucida and cultured individually as zona-free 2-cell embryos having 2 blastomeres in pair (ZF group), and single blastomeres were split from ZF group and cultured separately (SB group) in V-shaped microwells. In addition, intact 2-cell embryos were cultured individually without pronase treatment as a control group. After 24 h of in vitro culture, IVC-PyrLac was replaced by IVC-Glu (IVC with glucose). The blastocyst rates on Day 6 (Day 0 was defined as the day of electrical stimulation) in control, ZF, and SB groups did not differ (47.6, 50.0, and 42.1%, respectively). Nevertheless, blastocysts derived from the ZF (28.6 ± 3.0) and SB groups (25.9 ± 1.3) had a significantly lower total cell number than that of the control group (41.7 ± 3.2; P < 0.01 by ANOVA). Although the total cell number of blastocysts originating from single blastomeres was significantly lower than that in the intact embryos, the blastocyst formation rates were not different between them. This indicated the possibility of production of monozygotic twins from porcine 2-cell embryos divided into 2 single blastomeres. However, further research is needed to improve blastocyst quality descended from single blastomeres. In conclusion, the removal of the zona pellucida had a negative influence on blastocyst quality but did not affect the development of porcine embryos to the blastocyst stage.


2008 ◽  
Vol 20 (1) ◽  
pp. 118
Author(s):  
B. Gajda ◽  
Z. Smorag ◽  
M. Bryla

It is possible to improve the success of cryopreservation of in vitro-produced bovine embryos by modifying the embryos with the metabolic regulator phenazine ethosulfate (PES) (Seidel 2006 Theriogenology 65, 228–235). The PES treatment increased glucose matabolism, tended to increase the pentose phosphate pathway flux of glucose, and clearly reduced accumulation of lipids in cultured bovine embryos (De La Torre-Sanchez et al. 2006 Reprod. Fertil. Dev. 18, 597–607). It is known that porcine embryos have a considerably high content of lipids, and the success rates of their cryopreservation appear to be highly correlated with cytoplasmic lipid content. In our preliminary study, we observed that supplementation of NCSU-23 medium with PES has a positive effect on efficiency of pig blastocysts of good quality (Gajda et al.. 2007 Acta Biochim. Pol. 54(Suppl 1), 52 abst). In the present study, the effects of PES on pig blastocyst development, apoptosis, and survival after vitrification were investigated. In Exp. 1, porcine zygotes obtained from superovulated gilts were cultured in NCSU-23 medium supplemented with 0 (control), 0.025, 0.05, or 0.075 µm PES. The culture was performed at 39�C, with 5% CO2 in air, for 96–120 h. Embryo quality criteria were developmental competence (cleavage, morula stage, and blastocyst stage), cell number per blastocyst, and the degree of apoptosis as assessed by TUNEL staining. In Exp. 2, expanded blastocysts cultured with 0.025 µm PES were vitrified in a ethylene glycol and dimethyl sulfoxide mixture using open pulled straw (OPS) technology (Vajta et al. 1997 Acta Vet. Scand. 38, 349–352). After thawing, the blastocysts were cultured in vitro for re-expansion or transferred to synchronized recipients. Data were analyzed by chi-square test. There was a difference between the 0.025 µm PES-treated and the control group in percentage of cleaved embryos (99.0 and 91.4%, respectively; P < 0.05), between all experimental groups and control in percentage of morula stage (90.7, 87.8, 83.8, and 80.0%, respectively), and between 0.025 and 0.05 µm PES-treated and control in percentage of blastocyst rates (70.0, 75.5, and 65.7%, respectively). The number of cells and percentage of TUNEL-positive nuclei per blastocyst were lower in the PES-treated than in the control group. The survival rate of blastocysts after vitrification and thawing was enhanced in the presence of PES compared to that in the PES-free group (45.2 and 38.9%, respectively; P < 0.05). After transfer of 56 expanded blastocysts cultured with PES and vitrified into 3 recipients, two gilts were confirmed pregnant at 35 days of gestation. In conclusion, a higher blastocyst percentage with a low incidence of apoptosis was obtained in the presence of PES compared to control. These blastocysts also had an increased ability to survive cryopreservation.


2007 ◽  
Vol 19 (1) ◽  
pp. 147
Author(s):  
H. T. Lee ◽  
J. M. Jang ◽  
S. H. Lee ◽  
M. K. Gupta

In vitro production of cloned porcine embryos by somatic cell nuclear transfer (SCNT) has become routine in several laboratories but the efficiency and quality of the resultant blastocysts remains sub-optimal. Cloned porcine blastocysts show low cell number, high fragmentation rate, and apoptosis which results in lower pregnancy rates upon embryo transfer. Earlier we reported that supplementation of culture media with amino acids benefit pre-implantation embryo development of in vivo- as well as in vitro-fertilized porcine embryos (Koo et al. 1997 Theriogenology 48, 791–802). This study evaluated how exogenous amino acids could affect pre-implantation development and quality of cloned or parthenogenetic porcine embryos. The effects of commercially available amino acids, referred to as Eagle&apos;s non-essential amino acids (NEAA), added or not added (control) to NCSU23 medium containing fatty acid-free BSA were studied. Oocytes recovered from abattoir-derived prepubertal porcine ovaries were matured in vitro and parthenogenetically activated (PA) or nuclear-transferred with fetal fibroblasts (SCNT), as described earlier (Uhm et al. 2000 Mol. Reprod. Dev. 57, 331–337). At 168 h post-activation, blastocysts were harvested for assessment of embryo quality by TUNEL labeling, Hoechst 33342 staining, and gene expression analysis. Results showed that, in the PA group, the cleavage rate was not affected by the supplementation of NEAA. However, the blastocyst rate was significantly improved when NEAA was present in the medium compared to that of the control group (38.9 &plusmn; 0.3 vs. 27.5 &plusmn; 0.3&percnt;, respectively) throughout the culture period. The supplementation during the pre-compaction period alone gave better results than during the post-compaction period alone (59.5 &plusmn; 0.9 vs. 33.4 &plusmn; 0.3&percnt;, respectively). In the SCNT group, however, both cleavage (73.6 &plusmn; 0.2 vs. 64.2 &plusmn; 0.4&percnt;) and blastocyst rate (18.7 &plusmn; 0.2 vs. 13.8 &plusmn; 0.3&percnt;) were improved by NEAA supplementation. Furthermore, these blastocysts had higher hatching ability (30.0 &plusmn; 1.8 vs. 14.6 &plusmn; 4.9&percnt;) than those of control group (P &lt; 0.05). Supplementation of NEAA also increased the mean nuclei number of PA-derived (76.1 &plusmn; 4.9 vs. 66.5 &plusmn; 3.3) as well as SCNT-derived (43.1 &plusmn; 2.6 vs. 31.8 &plusmn; 1.9) blastocysts and reduced the time during which blastocysts formed. TUNEL assay revealed that incidence of nuclear fragmentation and apotosis was reduced by NEAA. Real-time qRT-PCR for Bax and Bcl-XL transcripts revealed that the relative abundance of Bax was reduced while that of Bcl-XL was increased. These effects were more pronounced when NEAA was present during the pre-compaction period alone. Thus, our data suggest that NEAA improves the yield and quality of cloned porcine embryos by enhancing blastocyst expansion and positively modulating the total cell number and apoptosis. These data may have implications for understanding the nutritional needs of cloned porcine embryos produced in vitro and for optimizing the composition of culture media to support their development. This work was supported by the Research Project on the Production of Bio-Organs (No. 200503030201), Ministry of Agriculture and Forestry, Republic of Korea.


2010 ◽  
Vol 22 (1) ◽  
pp. 322
Author(s):  
D. D. Bücher ◽  
M. A. Castro ◽  
M. E. Silva ◽  
M. A. Berland ◽  
I. I. Concha ◽  
...  

Granulocyte-macrophage colony stimulating factor (GM-CSF) is a pleiotropic cytokine that stimulates proliferation, differentiation and function in different cells types. We have previously demonstrated (Bücher DD et al. 2008 Reprod. Dom. Anim. 43 (Suppl. 3), 146 abst.) that both subunits of GM-CSF receptor are expressed in granulosa cells from antral follicles in bovine ovaries. Also, we determined that the cytokine enhances glucose uptake through facilitative hexose transporters in granulosa cells in primary culture. The goals of the present study were to characterize the expression of GM-CSF receptor in cumulus cells and oocytes from bovine antral follicles and to determine its effects on in vitro-matured bovine COCs in a chemically defined medium. To determine the presence of a and |5 subunits of GM-CSF receptor, COCs were aspirated from follicles <8 mm in diameter, fixed, and submitted to immunocytochemistry. To study the effect of GM-CSF on in vitro maturation of oocytes, COCs (n =481) were cultured using serum-free medium (SOF) containing 0, 1, 10, and 100 ng mL-1 of human recombinant GM-CSF (R&D Systems, Inc., Minneapolis, MN, USA) for 22 h at 39°C, 5% CO2 in humidified air. Nuclear stage, cumulus expansion, cumulus cell number, and viability were analyzed after in vitro maturation. Cumulus expansion was assessed using the cumulus expansion index (CEI) (Fagbohun C and Down S 1990 Biol. Reprod. 42, 413-423). Nuclear stage was evaluated using aceto-orcein stain. To determine cumulus cell viability and number, COCs (n = 10-12 per group) were transferred into an Eppendorf tube and cumulus cells were removed by vortexing for 3 min, stained with trypan blue and counted with a hemocytometer. The study was conducted in 6 replicates. Data from cumulus expansion and cell number were analyzed by Kruskal-Wallis analysis. Data for nuclear stage and cell viability were analyzed by chi-square analysis and one way ANOVA, respectively. Both receptor subunits were present in cumulus cells and oocytes from COCs. COCs cultured in 10 and 100 ng mL-1 GM-CSF had CEI scores (0.8 and 1.22, respectively) greater (P < 0.01) than controls (0.2), but the proportion of COCs displaying second metaphase did not differ (P = 0.5) among treatment groups. GM-CSF at a concentration of 100 ng mL-1 increased (P < 0.01) cumulus cell viability by more than 20% compared to the control group. Similarly, GM-CSF at concentrations of 10 and 100 ng mL-1 increased (P < 0.05) cumulus cell number by more than 20% and 45%, respectively, from the control group. The use of a specific inhibitor of PI3 kinase (Ly294002; 10 and 100 μM) blocked the stimulatory effect of GM-CSF on cumulus expansion, cell viability, and cell number. In conclusion, the results of the study suggest a plausible modulator role of GM-CSF in the metabolism and function of cumulus cells and oocytes during in vitro maturation. Funding from Faculty of Veterinary Sciences, Universidad Austral de Chile, MECESUP AUS-0005, AUS-0601, and DID D-2006-24 and from Universidad Católica de Temuco, research grant 2007 DGI-CDA-04.


Sign in / Sign up

Export Citation Format

Share Document