scholarly journals Effect of insulin–transferrin–selenium (ITS) and l-ascorbic acid (AA) during in vitro maturation on in vitro bovine embryo development

Zygote ◽  
2016 ◽  
Vol 24 (6) ◽  
pp. 890-899 ◽  
Author(s):  
A.L.S. Guimarães ◽  
S.A. Pereira ◽  
M. N. Diógenes ◽  
M.A.N. Dode

SummaryThe aim of this study was to evaluate the effect of adding a combination of insulin, transferrin and selenium (ITS) and l-ascorbic acid (AA) during in vitro maturation (IVM) and in vitro culture (IVC) on in vitro embryo production. To verify the effect of the supplements, cleavage and blastocyst rates, embryo size and total cell number were performed. Embryonic development data, embryo size categorization and kinetics of maturation were analyzed by chi-squared test, while the total cell number was analyzed by a Kruskal–Wallis test (P < 0.05). When ITS was present during IVM, IVC or the entire culture, all treatments had a cleavage and blastocyst rates and embryo quality, similar to those of the control group (P < 0.05). Supplementation of IVM medium with ITS and AA for 12 h or 24 h showed that the last 12 h increased embryo production (51.6%; n = 220) on D7 compared with the control (39.5%; n = 213). However, no improvement was observed in blastocyst rate when less competent oocytes, obtained from 1–3 mm follicles, were exposed to ITS + AA for the last 12 h of IVM, with a blastocyst rate of 14.9% (n = 47) compared with 61.0% (n = 141) in the control group. The results suggest that the addition of ITS alone did not affect embryo production; however, when combined with AA in the last 12 h of maturation, there was improvement in the quantity and quality of embryos produced. Furthermore, the use of ITS and AA during IVM did not improve the competence of oocytes obtained from small follicles.

Zygote ◽  
2009 ◽  
Vol 17 (1) ◽  
pp. 57-61 ◽  
Author(s):  
M. Popelková ◽  
Z. Turanová ◽  
L. Koprdová ◽  
A. Ostró ◽  
S. Toporcerová ◽  
...  

SummaryThe aim of the study was to determine the efficiency of two vitrification techniques followed by two assisted hatching (AH) techniques based on post-thaw developmental capacity of precompacted rabbit embryos and their ability to leave the zona pellucida (hatching) during in vitro culture. The total cell number and embryo diameter as additional markers of embryo quality after warming were evaluated. In vivo fertilized, in vitro cultured 8–12-cell rabbit embryos obtained from superovulated rabbit does were cryopreserved by two-step vitrification method using ethylene glycol (EG) as cryoprotectant or by one-step vitrification method with EG and Ficoll (EG+Ficoll). Thawed embryos were subjected to enzymatic or mechanical AH. Vitrified EG group showed significantly lower (P < 0.05) blastocyst rate (22.5%) and hatching rate (15%) than those vitrified with EG + Ficoll (63 and 63% resp.) and that of control (97 and 97% respectively). Significantly lower values of total cell number (P < 0.05) as well as embryo diameter (P < 0.01) in EG group compared with EG + Ficoll and control group were recorded. No significant difference was found in developmental potential of warmed embryos treated by either mechanical or enzymatic AH. The present study demonstrates that the EG + Ficoll vitrification protocol provides superior embryo survival rates over the EG vitrification protocol for 8–12-cell stage precompacted rabbit embryos. No positive effect of either mechanical or enzymatic AH on the post-thaw viability and quality of rabbit embryos in vitro was observed.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 327-328
Author(s):  
Galina Singina

Abstract The oocyte quality acquired during in vitro maturation (IVM) are the main limitative factors affecting the embryo production. The aim of the present research was to study effects of fibroblast growth factor 2 (FGF2) and insulin-like growth factor 1 (IGF1) during IVM of bovine oocytes on their developmental potential after parthenogenetic activation. Bovine cumulus-oocyte complexes (COC; n = 1176) were cultured for 22h in either standard maturation medium (TCM-199 supplemented with 10% fetal calf serum (FCS), 0.2 mM sodium pyruvate, 10 μg/ml FSH and 10 μg/ml LH; Control) or maturation medium supplemented with different concentrations (5–160 ng/ml) of FGF2 and IGF1. After IVM, matured oocytes activated by sequential treatment with ionomycin followed by DMAP and cyclohexamide and then cultured up to the blastocyst stage. The obtained blastocysts were fixed, and the total cell number and the level of apoptosis were determined using DAPI and TUNEL staining. The data from 4 replicates (77–91 oocytes per treatment) were analyzed by ANOVA. Cleavage rates of activated oocytes did not differ between groups and ranged from 63.7 to 68.1%. The addition of 10, 20 and 40 ng/ml of FGF2 to the IVM medium led to an increase in the yield of blastocysts [from 19.6±1.8% (Control) to 35.2±3.4, 29.8±1.9 and 31.1±2.1%, respectively (P&lt;0.05)] and in the total cell number in embryos that developed to the blastocyst stage (P&lt;0.05). Meanwhile, the blastocyst yield and the total cell number in blastocysts in the IGF1-treated groups were similar to that in the control group. No effects of both growth factors on the proportion of apoptotic nuclei in blastocysts (5.3–7.1%) were observed. Thus, FGF2 (but not IGF1) are able to maintain competence for parthenogenetic development of bovine COC during their maturation invitro. Supported by RFBR (18-29-07089) and the Ministry of Science and Higher Education of Russia.


2009 ◽  
Vol 21 (1) ◽  
pp. 148
Author(s):  
D. N. Q. Thanh ◽  
K. Matsukawa ◽  
M. Kaneda ◽  
S. Akagi ◽  
Y. Kanai ◽  
...  

In the mouse, single blastomeres of the 2-cell embryos can develop into adult mice and occasionally both separated blastomeres can give rise to twin animals (reviewed by Tarkowski AK et al. 2001 Int. J. Dev. Biol. 45, 591–596). As a preliminary study for production of monozygotic twins from porcine 2-cell embryos, we investigated the effects of removal of zona pellucida and blastomere isolation at the 2-cell stage on subsequent development of parthenogenetic embryos. Oocytes with the first polar body were parthenogenetically activated after 44 h of in vitro maturation. Stimulated oocytes were then incubated in IVC-PyrLac (IVC medium with pyruvate and lactose) according to the method reported by Kikuchi K et al. (2002 Biol. Reprod. 66, 1033–1041). After 24 to 30 h of parthenogenetic activation, equally cleaved 2-cell embryos were selected and used for the experiments. Some 2-cell embryos were then treated with pronase to remove the zona pellucida and cultured individually as zona-free 2-cell embryos having 2 blastomeres in pair (ZF group), and single blastomeres were split from ZF group and cultured separately (SB group) in V-shaped microwells. In addition, intact 2-cell embryos were cultured individually without pronase treatment as a control group. After 24 h of in vitro culture, IVC-PyrLac was replaced by IVC-Glu (IVC with glucose). The blastocyst rates on Day 6 (Day 0 was defined as the day of electrical stimulation) in control, ZF, and SB groups did not differ (47.6, 50.0, and 42.1%, respectively). Nevertheless, blastocysts derived from the ZF (28.6 ± 3.0) and SB groups (25.9 ± 1.3) had a significantly lower total cell number than that of the control group (41.7 ± 3.2; P < 0.01 by ANOVA). Although the total cell number of blastocysts originating from single blastomeres was significantly lower than that in the intact embryos, the blastocyst formation rates were not different between them. This indicated the possibility of production of monozygotic twins from porcine 2-cell embryos divided into 2 single blastomeres. However, further research is needed to improve blastocyst quality descended from single blastomeres. In conclusion, the removal of the zona pellucida had a negative influence on blastocyst quality but did not affect the development of porcine embryos to the blastocyst stage.


2012 ◽  
Vol 24 (1) ◽  
pp. 207
Author(s):  
Y. Jeon ◽  
S.-S. Kwak ◽  
S.-A. Jeong ◽  
R. Salehi ◽  
Y. H. Seong ◽  
...  

Trans-ε-viniferin is a naturally occurring polyphenol belonging to the stilbenoids family. Trans-ε-viniferin is isolated from Vitis amurensis, 1 of the most common wild grapes in Korea, Japan and China. We investigated the effects of trans-ε-viniferin on in vitro maturation (IVM) and developmental competence after IVF or parthenogenesis (PA). At the laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Chungbuk National University, trans-ε-viniferin was purified from the leaves and stems of Vitis amurensis. Data were analyzed with SPSS 17.0 using Duncan's multiple range test. First, in total, 594 cumulus–oocyte complexes (COC) were used for the evaluation of nuclear maturation. The COC were matured in TCM-199 medium supplemented with various concentrations of trans-ε-viniferin (0, 0.1, 0.5, 1.0 and 5.0 μM) with 10% porcine follicular fluid, 10 IU mL–1 of eCG and 10 IU mL–1 of hCG. After 22 h in maturation culture, the COC were cultured in hormone-free medium supplemented with various concentrations of trans-ε-viniferin for an additional 22 h and then nuclear maturation was evaluated. Second, in total, 300 matured oocytes were used to examine the effects of different trans-ε-viniferin concentrations (0, 0.5 and 5.0 μM) on porcine oocyte intracellular glutathione (GSH) and reactive oxygen species (ROS) levels. Lastly, the developmental competence of oocytes matured with different concentrations of trans-ε-viniferin (0, 0.5 and 5.0 μM) was evaluated after IVF or PA. In total, 711 embryos were evaluated. As results, we observed that trans-ε-viniferin treatment during IVM did not improve the nuclear maturation of oocytes in any group (84.2, 86.6, 85.5, 83.3 and 79.2%, respectively), but significantly increased (P < 0.05) intracellular GSH levels in the 0.5 μM group (0 μM vs 0.5 μM; 14.6 vs 16.8 pmol oocyte–1) and reduced ROS levels (0 μM vs 0.5 μM and 50 μM; 174.6 vs 25.7 and 23.8 pixel oocyte–1). Oocytes treated with trans-ε-viniferin during IVM did not have significantly different cleavage rates or blastocyst formation rates after IVF, but total cell numbers were significantly higher (P < 0.05) in the 0.5 and 5.0 μM treatment groups (53.6 ± 4.0 and 47.9 ± 3.1) compared to the control group (36.4 ± 2.2). The PA embryos showed similar results; there were no significant differences in cleavage rates and blastocyst formation rates, but the total cell number significantly increased in the 0.5 and 5.0 μM treatment groups (59.6 ± 4.2 and 60.8 ± 4.6) compared to the control group (43.1 ± 2.1). In conclusion, these results indicate that trans-ε-viniferin treatment during porcine IVM increased total cell number of blastocysts, possibly through increasing intracellular GSH synthesis and reducing ROS levels. This work was supported by a grant from the Korea institute of Planning & Evaluation for Technology in Food, Agriculture, Forestry & Fisheries, Republic of Korea.


2012 ◽  
Vol 24 (1) ◽  
pp. 160
Author(s):  
K. Lee ◽  
J. Teson ◽  
L. Spate ◽  
C. N. Murphy ◽  
R. S. Prather

There have been significant improvements in the culture of porcine embryos in vitro; however, it is still suboptimal. Improvements in porcine embryo culture would benefit utilisation of porcine embryos for a variety of purposes. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is known to be expressed in the female reproductive tract and the level of its expression is high between conception and implantation. Previous studies show supplementing GM-CSF in embryo culture promotes embryonic development in human and bovine embryos. The aim of this study was to investigate the effect of GM-CSF on the culture of porcine embryos derived from somatic cell nuclear transfer (SCNT) and IVF. Different concentrations of recombinant porcine GM-CSF (0, 2, 10 ng mL–1) were introduced into Porcine Zygote Medium 3 from Day 1 to 6. Frequencies of cleaved embryos and blastocyst formation were recorded and analysed by using ANOVA following arcsin transformation. Total cell number in blastocysts from each group were counted and compared by using the Student's t-test. Differences at P < 0.05 were considered significant. A total of 563 SCNT embryos from 6 different donor cell lines on 11 different days were produced for the study. Incubation of SCNT embryos with GM-CSF did not affect the frequency of cleaved embryos. Frequencies of cleaved embryos in control (0 ng mL–1), 2 ng mL–1 GM-CSF and 10 ng mL–1 GM-CSF were 64.2%, 68.1% and 65.0%, respectively. Interestingly, both concentrations of GM-CSF significantly increased the frequency of blastocyst formation as compared with the control. In 2 ng mL–1 and 10 ng mL–1 of GM-CSF groups, 30.8% and 32.3% of embryos reached blastocyst respectively, whereas only 22.4% of embryos reached blastocyst in the control group. A significant increase in total cell number in blastocysts was observed when GM-CSF was introduced into embryo culture. An average of 28.8 ± 0.9 cells was recorded in the control group, whereas 31.9 ± 1.1 and 31.8 ± 1.1 were observed in 2 ng mL–1 and 10 ng mL–1 of GM-CSF groups, respectively. Similar effects were observed when GM-CSF was introduced to the culture of IVF embryos. For IVF study, 525 embryos were generated on 10 different days and embryos cultured in the presence of GM-CSF tended to show higher blastocyst formation (P = 0.1). Frequencies of blastocyst per cleaved in the 3 groups were 55.7% (control), 65.7% (2 ng mL–1 GM-CSF) and 66.7% (10 ng mL–1 GM-CSF). In addition, culture of IVF embryos with GM-CSF significantly increased total cell number in Day 6 blastocysts. Total cell number in blastocysts in 2 ng mL–1 GM-CSF (34.2 ± 0.8) and 10 ng mL–1 GM-CSF (34.4 ± 1.2) were significantly higher compared with control (27.3 ± 1.2). Our results indicate that introducing GM-CSF into embryo culture media can increase the quality of blastocyst stage embryos. An increase in the frequency of blastocyst formation and total cell number in blastocysts suggests that GM-CSF can be used to produce better-quality embryos in vitro. Currently, effects of GM-CSF on implantation of SCNT embryos are under investigation. Further studies would elucidate the specific mechanism of GM-CSF on porcine embryos.


2006 ◽  
Vol 18 (2) ◽  
pp. 152
Author(s):  
C. Cuello ◽  
F. Berthelot ◽  
B. Delaleu ◽  
C. Almiñana ◽  
J. M. Vázquez ◽  
...  

The development of the open pulled straw vitrification has provided excellent results of in vitro porcine embryo development. Embryo quality evaluation after vitrification has been traditionally focused on morphological assessment performed by stereomicroscopy. The objective of this experiment was to evaluate the efficiency of the stereomicroscopic evaluation of vitrified-warmed (V) porcine blastocysts. Unhatched blastocysts were obtained after slaughter from Large-White gilts (n = 9). Blastocysts (n = 75) were vitrified and warmed using the protocol described by Cuello et al. (2004 Theriogenology 61, 353-361). After warming, vitrified blastocysts were cultured for 24 h. Then blastocysts were morphologically assessed for their progression and morphology by stereomicroscopy. Blastocysts that reformed their blastocoelic cavities showing an excellent appearance were considered viable. Some of the viable blastocysts kept their zonae pellucidae (V viable expanded blastocysts) and others hatched during the in vitro culture (V viable hatched blastocysts). The remaining blastocysts were classified as degenerated embryos. A group of fresh blastocysts was not vitrified and cultured in vitro for 24 h (control group). All of the control blastocysts were considered viable by stereomicroscopy. Some fresh, V viable expanded, V viable hatched, and V degenerated blastocysts (n = 13, n = 19, n = 9, and n = 9, respectively) were processed for ultrastructural study by light and transmission electron microscopy or stained with Hoechst-33342 and TUNEL for cell death evaluation (n = 16, n = 21, n = 11, and n = 6, respectively). All V hatched blastocysts showed ultrastructure similar to that of control hatched blastocysts. However, 26.3% of the V viable expanded blastocysts revealed important ultrastructural alterations in comparison with control expanded blastocysts. These observations suggest that stereomicroscopic evaluation was not efficient enough for V expanded blastocysts. As expected, degenerated blastocysts showed ultrastructural disintegration and disorganization. Hatched V blastocysts did not differ (P < 0.05) from control hatched blastocysts with regard to the total cell number and ratio of death cells (173 � 4.8 vs. 202.1 � 10.9 and 2.8 � 0.5% vs. 1.9 � 0.3%, respectively). However, V expanded blastocysts a had higher (P < 0.01) cell death level (4.3 � 3.4%) than that observed in the control expanded blastocysts (1.1 � 0.3%). Degenerated embryos showed the lowest (P < 0.01) total cell number (45.7 � 4.0). The 66.7% of the degenerated blastocysts exhibited wide TUNEL-labeled areas, and the remaining 33.3% showed TUNEL label over 19.4 � 6.3% of the cells. In conclusion, the hatching rate assessed by stereomicroscopy is a more efficient parameter than assessing the in vitro viability (ratio of blastocysts that reformed their blastocoelic cavities after warming) for estimating the quality of V blastocysts. This work was supported by CICYT (AGL2004-07546) and S�neca (01287/PD/04).


2013 ◽  
Vol 25 (1) ◽  
pp. 177 ◽  
Author(s):  
M. Castillo-Martín ◽  
M. Yeste ◽  
R. Morató ◽  
T. Mogas ◽  
S. Bonet

The benefits of adding l-ascorbic acid during the cryopreservation procedure have been reported before in mouse and bovine. In this study, the effects of l-ascorbic acid (AC) supplementation during culture, cryopreservation, or both procedures on the developmental ability and embryo quality of in vitro produced porcine blastocysts were examined. Embryo quality criteria consisted of total cell number, percentage of apoptosis, and cryotolerance. After in vitro fertilisation, presumptive zygotes were randomly assigned to 2 culture treatments in which the culture medium NCSU23 was supplemented with 100 µM AC (n = 1162) or nonsupplemented (n = 1163) for a 144-h period. On Day 6, blastocyst formation was assessed by stereomicroscopy, and a representative fraction of Grade I- and II-blastocysts of each culture treatment was evaluated using 4′,6-diamidino-2-phenylindole-TUNEL co-staining and considered as fresh-control. The remaining fraction of Grade I- and II-blastocysts was vitrified/warmed following the Cryotop® method. To determine the effect of AC supplementation during cryopreservation procedures, each culture treatment was divided into 2 groups: (1) embryos exposed to 100 µM AC, and (2) nonexposed embryos (vitrified-control). Survival was determined according to reexpansion rates after 24 h of recovery in NCSU23 medium. After 24 h, reexpanded blastocysts were co-stained using the 4′,6-diamidino-2-phenylindole-TUNEL technique, and total number of cells and apoptosis indexes were determined. Experiment was replicated 9 times for each group. Data were analyzed by t-test for independent variables and a 2-way ANOVA. Results are expressed as means ± SE, and the significant level was set at 5% (Table 1). After culture, supplementing NCSU23 medium with AC showed no significant differences in blastocyst formation (fresh-control 11.6 ± 7.8 v. AC 11.6 ± 7.7), in number of cells (fresh-control 36.7 ± 15.8 v. AC 36.1 ± 15.9), or in apoptosis index (fresh-control 2.9 ± 5.7 v. AC 3.5 ± 4.7). On the other hand, only when both culture and vitrified media were supplemented with AC was there a significant increase of blastocyst survival. In contrast, no significant differences in embryo survival were observed when only 1 of these 2 media (culture or vitrification) was supplemented. Supplementing culture media or cryopreservation solutions with AC did not affect the total cell number or apoptosis index in vitrified blastocysts. In conclusion, the addition of 100 µM l-ascorbic acid to the culture and cryopreservation solutions improves the cryotolerance of in vitro-produced porcine blastocysts. Table 1.Survival of blastocysts (24 h), total cell number, and percentage of apoptosis after vitrification/warming


2011 ◽  
Vol 23 (1) ◽  
pp. 130
Author(s):  
J. Li ◽  
J. Adamsen ◽  
R. Li ◽  
H. Pedersen ◽  
Y. Liu ◽  
...  

One of the primary factors influencing the developmental ability of cloned embryos is the oocyte′s diameter (Hirao et al. 1994 J. Reprod. Fertil. 100, 333–339). However, the oocyte donor's age (i.e. its sexual maturity) is also important to consider, because a high proportion of immature oocytes can be expected (Ikeda and Takahashi 2003 Reprod. Fertil. Dev. 15, 215–221). The present study was to investigate the effect of diameter of oocytes collected from prepubertal gilts weighing 100 to 120 kg on the developmental ability of cloned and parthenogenetically activated (PA) embryos. Cumulus–oocyte complexes collected from ovaries of prepubertal gilts were in vitro matured for 42 to 44 h as described for sow oocytes (Li et al. 2008 Theriog 70, 800–808). After removal of the cumulus cells, the matured oocytes were sorted into 2 groups based on visual inspection: large (L) and small (S) oocytes, whereas non-sorted oocytes were used as control (C). In addition, 1 batch from each of the 3 groups of oocytes had their mean size measured. Subsequently, all 3 groups were used for handmade cloning (HMC; Li et al. 2009 Reprod. Domest. Anim. 44, 122–127) or parthenogenetic activation (PA; Kragh et al. 2005 Theriogenology 64, 1536–1545). Then a chemical activation with 5 μg mL–1 cytochalasin B and 10 μg mL–1 cycloheximide in PZM-3 medium was applied for 4 h on both HMC and PA embryos. Finally, the activated embryos were washed and cultured in PZM-3 medium using the WOW system. The embryo development was evaluated by cleavage rate (Day 2), blastocyst rate (Day 6), and total cell number in blastocysts. Data were analysed by ANOVA with single factor in Excel (Microsoft Excel 2007, Redmond, WA, USA). The results showed (Table 1) that by simple visual observation, oocytes could be easily sorted into the following groups: L group (mean diameter 110 μm, from 105 to 116 μm), S group (mean diameter 101 μm, from 93 to 106 μm) and C group (mean diameter 107 μm, from 93 to 116 μm). Cleavage rates and total cell number were similar in the 3 groups. However, the blastocyst rate in L group either for HMC or PA was higher than S group. The data confirm that prepubertal gilt oocytes are useful for cloning and PA, but developmental rates can be increased by selection of large oocytes by simple visual observation. Table 1.Data analysis results


2015 ◽  
Vol 27 (1) ◽  
pp. 106
Author(s):  
J. Tao ◽  
Y. Zhang ◽  
D. Song ◽  
Y. Li ◽  
Y. Zhang

EPZ004777 (EPZ), a specific inhibitor of DOT1L (a methyltransferase of H3K79), can significantly improve the generation and quality of mouse induced pluripotent stem cells [Onder et al. 2012 Nature 483(7391), 598–602), suggesting that H3K79 dimethylation (H3K79me2) is involved in controlling cell pluripotency. To date, however, it is unclear whether H3K79me2 regulates development competency of animal cloned embryos. Thus, we aimed to examine the dynamic changes of H3K79me2 in pre-implantation cloned embryos of pigs, and to explore effect of EPZ treatment of embryos on in vitro development fate in order to lay the foundation for revealing the role of H3K79me2 and mechanisms in controlling cell pluripotency. Porcine cloned embryos were treated immediately when fusion and activation stimuli were conducted, in vitro with porcine zygote medium (PZM)-3, including 0.5, 5, or 50 nM EPZ (S7353, Selleck Chemicals, Houston, TX, USA) and 1‰ DMSO (vol/vol, control group) for 24 h, respectively. Then, they were transferred into fresh PZM-3 without EPZ. We found that there was no significant difference in cleavage rate among groups, whereas the blastocyst rate of 0.5 nM EPZ group was higher than that of control group [28.97 ± 2.65% (28/96) v. 17.13 ± 2.69% (17/96)]. No obvious difference was observed for the total cell number of blastocyst among groups. We further treated the SCNT embryos with 0.5 nM EPZ for 0 (control group), 12, 24, and 36 h, respectively. No significant differences were found for cleavage rate among groups, whereas the blastocyst rates of the 12- and 24-h groups were significantly higher than that of control and 36-h groups [28.56 ± 3.51% (27/97), 28.34 ± 3.00% (25/88) v. 16.32 ± 1.93% (16/97), 17.93 ± 0.64% (18/100)]. Except for the remarkable decrease in the 36-h treatment group, no obvious difference was observed for the total cell number of blastocyst among the other 3 groups. All the above experiments were repeated at least 3 times. These results suggested that treatment of porcine SCNT embryos with 0.5 nM EPZ for 12 to 24 h could improve their development during the early stage. Then, we tested whether the EPZ favoured the in vitro development of porcine SCNT embryos by regulating H3K79me2 reprogramming. Porcine SCNT embryos were treated with 0.5 nM EPZ from the onset of electric activation and fusion stimuli was performed, and then the H3K79me2 signal (by immune-fluorescent staining) and expression of DOT1L (by RT-qPCR) at different development stages was analysed. We found that the H3K79me2 signal in control group (without EPZ treatment) decreased slowly from the time of electric stimulation to 4 hpa, and it disappeared in 8 hpa stage. In the EPZ treatment group, H3K79me2 signal started decreasing from 2 hpa, and disappeared in 8 hpa stage. The mRNA level of DOT1L in EPZ treatment group was lower than that in control group, although the difference was not significant. Taken together, treatment with EPZ at the appropriate concentration and for an appropriate time can improve the early in vitro development of pig SCNT embryos, probably by inhibiting expression of DOT1L and facilitating reprogramming of H3K79me2.Research was supported by NSFC No. 31272442.


2015 ◽  
Vol 27 (1) ◽  
pp. 216 ◽  
Author(s):  
A. Veshkini ◽  
M. Khajenabi ◽  
A. Mohammadi-Sangcheshmeh

Fatty acids are important sources of energy for oocytes and embryos. In bovine, an increased level of rumen-inert fatty acids in the diet improved the developmental competence of oocytes to the blastocyst stage and also embryo quality. As described in our previous report, providing appropriate levels of α-linolenic acid (ALA) in maturation medium had beneficial effects on nuclear maturation and embryonic development in the goat. Considering these beneficial effects, here we have conducted experiments to evaluate whether addition of ALA to goat oocyte maturation medium can affect the quality of blastocyst and the transcription of apoptosis-related Bax, Bcl-2, and p53 genes. Ovaries were collected from goats, and cumulus-oocyte complexes (COC) were recovered by the slicing method. The COC were placed in maturation medium supplemented with 50 µM ALA. Oocytes in the control group were incubated in the same maturation medium without ALA. In vitro maturation (IVM) was performed in a humidified atmosphere containing 5% CO2, 5% O2, and 90% N2 at 38.5°C for 24 h. After IVM, oocytes from both the treatment (n = 113) and control (n = 104) groups were subjected to IVF followed by culture in CR1aa medium for 8 days under the conditions stated above. The cleavage and blastocyst rates were recorded at Days 3 and 8 of culture, respectively. To examine the effect of ALA on total cell number and apoptosis of the blastocyst cells, the blastocysts from 50 μM ALA-treated and control oocytes were stained with 4′,6-diamidino-2-phenylindole to count total cell number, and apoptotic cells in these blastocysts were detected with TUNEL assay. Blastocysts derived either from 50 μM ALA-treated oocytes or control oocytes were also evaluated for the expression of Bax, Bcl-2, and p53 genes. The cleavage and blastocyst rates were compared by chi-square analysis. Differentially expressed genes were analysed by 1-way ANOVA. A P-value of less than 0.05 was considered significant. Although cleavage rates after IVF were similar (P > 0.05) between 50 μM ALA-treated (68.1%) and control (55.8%) groups, 50 μM ALA-treated oocytes produced more (25.7%) blastocysts than the control group (13.5%; P < 0.05). Blastocysts derived from oocytes supplemented with 50 μM ALA not only had a greater (P < 0.05) total cell number (115.2), but also a lower (P < 0.05) number of apoptotic cells (3.1) compared with the control blastocysts (110.8 and 4.2, respectively). The relative transcript abundance of Bax and p53 was decreased (P < 0.05) in blastocysts that originated from the 50 μM ALA group compared with control blastocysts. Furthermore, there was an increased (P < 0.05) expression of Bcl-2 transcripts in blastocysts derived from the 50 μM ALA-treated oocytes compared with the control. In conclusion, our findings revealed that ALA-treated medium led to an improvement in blastocyst rate and quality as determined by greater total cell number, lower number of apoptotic cells, and altered expression of apoptosis-related genes.


Sign in / Sign up

Export Citation Format

Share Document