LOW-NOISE SMALL-SIGNAL AMPLIFIER

1963 ◽  
Author(s):  
D. NEUF ◽  
P. LOMBARDO
2015 ◽  
Vol 7 (3-4) ◽  
pp. 339-347 ◽  
Author(s):  
Stefan Malz ◽  
Bernd Heinemann ◽  
Rudolf Lachner ◽  
Ullrich R. Pfeiffer

This paper presents two J-band amplifiers in different 0.13 μm SiGe technologies: a small signal amplifier (SSA) in a technology in which never before gain has been shown over 200 GHz; and a low noise amplifier (LNA) design for 230 GHz applications in an advanced SiGe HBT technology with higher fT/fmax, demonstrating the combination of high gain, low noise, and low power in a single amplifier. Both circuits consist of a four-stage pseudo-differential cascode topology. By employing series–series feedback at the single-stage level the small-signal gain is increased, enabling circuit operation at high-frequencies and with improved efficiency, while maintaining unconditional stability. The SSA was fabricated in a SiGe BiCMOS technology by Infineon with fT/fmax values of 250/360 GHz. It has measured 19.5 dB gain at 212 GHz with a 3 dB bandwidth of 21 GHz. It draws 65 mA from a 3.3 V supply. On the other hand, a LNA was designed in a SiGe BiCMOS technology by IHP with fT/fmaxof 300/450 GHz. The LNA has measured 22.5 dB gain at 233 GHz with a 3 dB bandwidth of 10 GHz and a simulated noise figure of 12.5 dB. The LNA draws only 17 mA from a 4 V supply. The design methodology, which led to these record results, is described in detail with the LNA as an example.


2021 ◽  
pp. 1-16
Author(s):  
Sachchida Nand Shukla ◽  
Geetika Srivastava ◽  
Syed Shamroz Arshad

1963 ◽  
Author(s):  
D. NEUF ◽  
P. LOMBARDO

1963 ◽  
Author(s):  
D. Neuf ◽  
P. Lombardo

Author(s):  
Mizuki Motoyoshi ◽  
Kyoya Takano ◽  
Kosuke Katayama ◽  
Minoru Fujishima

Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 150 ◽  
Author(s):  
Lorenzo Pace ◽  
Sergio Colangeli ◽  
Walter Ciccognani ◽  
Patrick Ettore Longhi ◽  
Ernesto Limiti ◽  
...  

In this paper a GaN-on-Si MMIC Low-Noise Amplifier (LNA) working in the Ka-band is shown. The chosen technology for the design is a 100 nm gate length HEMT provided by OMMIC foundry. Both small-signal and noise models had been previously extracted by the means of an extensive measurement campaign, and were then employed in the design of the presented LNA. The amplifier presents an average noise figure of 2.4 dB, a 30 dB average gain value, and input/output matching higher than 10 dB in the whole 34–37.5 Ghz design band, while non-linear measurements testify a minimum output 1 dB compression point of 23 dBm in the specific 35–36.5 GHz target band. This shows the suitability of the chosen technology for low-noise applications.


2020 ◽  
Vol 1499 ◽  
pp. 012033
Author(s):  
A A Popov ◽  
D V Bilevich ◽  
A A Metel ◽  
A S Salnikov ◽  
I M Dobush ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
R. Malmqvist ◽  
C. Samuelsson ◽  
A. Gustafsson ◽  
P. Rantakari ◽  
S. Reyaz ◽  
...  

A K-band (18–26.5 GHz) RF-MEMS-enabled reconfigurable and multifunctional dual-path LNA hybrid circuit (optimised for lowest/highest possible noise figure/linearity, resp.) is presented, together with its subcircuit parts. The two MEMS-switched low-NF (higher gain) and high-linearity (lower gain) LNA circuits (paths) present 16.0 dB/8.2 dB, 2.8 dB/4.9 dB and 15 dBm/20 dBm of small-signal gain, noise figure, and 1 dB compression point at 24 GHz, respectively. Compared with the two (fixed) LNA subcircuits used within this design, the MEMS-switched LNA circuit functions show minimum 0.6–1.3 dB higher NF together with similar values ofP1 dBat 18–25 GHz. The gain of one LNA circuit path is reduced by 25–30 dB when the MEMS switch and active circuitry used within in the same switching branch are switched off to select the other LNA path and minimise power consumption.


Sign in / Sign up

Export Citation Format

Share Document