J-band amplifier design using gain-enhanced cascodes in 0.13 μm SiGe

2015 ◽  
Vol 7 (3-4) ◽  
pp. 339-347 ◽  
Author(s):  
Stefan Malz ◽  
Bernd Heinemann ◽  
Rudolf Lachner ◽  
Ullrich R. Pfeiffer

This paper presents two J-band amplifiers in different 0.13 μm SiGe technologies: a small signal amplifier (SSA) in a technology in which never before gain has been shown over 200 GHz; and a low noise amplifier (LNA) design for 230 GHz applications in an advanced SiGe HBT technology with higher fT/fmax, demonstrating the combination of high gain, low noise, and low power in a single amplifier. Both circuits consist of a four-stage pseudo-differential cascode topology. By employing series–series feedback at the single-stage level the small-signal gain is increased, enabling circuit operation at high-frequencies and with improved efficiency, while maintaining unconditional stability. The SSA was fabricated in a SiGe BiCMOS technology by Infineon with fT/fmax values of 250/360 GHz. It has measured 19.5 dB gain at 212 GHz with a 3 dB bandwidth of 21 GHz. It draws 65 mA from a 3.3 V supply. On the other hand, a LNA was designed in a SiGe BiCMOS technology by IHP with fT/fmaxof 300/450 GHz. The LNA has measured 22.5 dB gain at 233 GHz with a 3 dB bandwidth of 10 GHz and a simulated noise figure of 12.5 dB. The LNA draws only 17 mA from a 4 V supply. The design methodology, which led to these record results, is described in detail with the LNA as an example.

2013 ◽  
Vol 380-384 ◽  
pp. 3287-3291
Author(s):  
Bing Liang Yu ◽  
Xiao Ning Xie ◽  
Wen Yuan Li

A fully integrated low noise amplifier (LNA) for wireless local area network (WLAN) application is presents. The circuit is fabricated in 0.18μm SiGe BiCMOS technology. For the low noise figure, a feedback path is introduced into the traditional inductively degenerated common emitter cascade LNA, which decreases the inductance for input impedance matching, therefore reduces the thermal noise caused by loss resistor. Impedance matching and noise matching are achieved at the same time. Measured results show that the resonance point of the output resonance network shifts from 2.4GHz to 2.8GHz, due to the parasitic effects at the output. At the frequency of 2.8GHz, the LNA achieves 2.2dB noise figure, 19.4dB power gain. The core circuit consumes only 13mW from a 1.8V supply and occupies less than 0.5mm2.


2013 ◽  
Vol 336-338 ◽  
pp. 1490-1495
Author(s):  
Yong Xiang ◽  
Yan Bin Luo ◽  
Ren Jie Zhou ◽  
Cheng Yan Ma

A 1.575GHz SiGe HBT(heterojunction bipolar transistor) low-noise-amplifier(LNA) optimized for Global Positioning System(GPS) L1-band applications was presented. The designed LNA employed a common-emitter topology with inductive emitter degeneration to simultaneously achieve low noise figure and input impedance matching. A resistor-bias-feed circuit with a feedback resistor was designed for the LNA input transistor to improve the gain compression and linearity performance. The LNA was fabricated in a commercial 0.18µm SiGe BiCMOS process. The LNA achieves a noise figure of 1.1dB, a power gain of 19dB, a input 1dB compression point(P1dB) of -13dBm and a output third-order intercept point(OIP3) of +17dBm at a current consumption of 3.6mA from a 2.8V supply.


2012 ◽  
Vol 433-440 ◽  
pp. 5579-5583
Author(s):  
Ji Hai Duan ◽  
Chun Lei Kang

A fully integrated 5.2GHz variable gain low noise amplifier (VGLNA) in a 0.18μm CMOS process is proposed in this paper. The VGLAN can achieve a maximum small signal gain of 17.85 dB within the noise figure (NF) of 2.04 dB and a minimum gain of 2.04 dB with good input return loss. The LNA’s P1dB in the high gain mode is -17.5 dBm. The LAN consumes only 14.58 mW from a 1.8V power supply.


2008 ◽  
Vol 55 (1) ◽  
pp. 59-68
Author(s):  
Thierry Taris ◽  
Cristian Pavão Moreira ◽  
Nicolas Seller ◽  
Jean-Baptiste Begueret ◽  
Eric Kerhervé ◽  
...  

2014 ◽  
Vol 513-517 ◽  
pp. 4580-4584
Author(s):  
Bing Liang Yu ◽  
Jin Li ◽  
Wen Yuan Li

A novel low-noise amplifier (LNA) suitable for COMPASS receiver applications is designed in SiGe-BiCMOS technology. Inductively degenerated technique and resistive feedback technique are employed to reduce the noise figure. With 1.8V power supply, the measured results achieve 17.23dB power gain and 2.58dB noise figure at 1.561GHz.


2019 ◽  
Vol 8 (4) ◽  
pp. 2467-2474 ◽  

This article presents the differential CMOS-LNA design for wireless receiver at the frequency of 3.4GHz. This differential 𝑳𝑵𝑨 provides less noise figure (NF), high gain and good reverse isolation as well as good stability. The designed LNA is simulated with a 180 nanometers CMOS process in cadence virtuoso tool and simulate the results by using SpectreRF simulator. This LNA exhibits a NF of 0.7dB, a high voltage gain of 28dB, and good reverse isolation (S12) of -70dB. It produces an input and output reflection coefficient (S11) of - 6.5dB and (S22) of -14dB, and it maintains good stability of Rollet factor Kf > 1, and also alternate stability factor B1f < 1, respectively.


Author(s):  
Pournamy Sukumaran ◽  
Navin Kumar ◽  
Maran Ponnambalam

This paper presents an inductor less wideband low noise amplifier (LNA) with an area of 0.3[Formula: see text]mm2, using 130[Formula: see text]nm SiGe BiCMOS technology targeted for 5G WiGig wireless application. A [Formula: see text] boosting amplifier used at the intermediate node of the cascode topology to reduce the noise contribution of the common base (CB) transistor for the first time in SiGe HBT technology. Mathematical analysis shows that the proposed high frequency [Formula: see text] boosting technique on the CB transistor can be optimally tuned for either low NF or high linearity. Furthermore, the circuit incorporates variable capacitors for multimode capability, ensuring optimal performance in all four WiGig channels. Post layout EM simulation of the circuit shows that the resultant LNA has a maximum gain of 21.08[Formula: see text]dB with the [Formula: see text]3 dB frequency over 56[Formula: see text]GHz to 67.3[Formula: see text]GHz. The proposed LNA exhibits a minimum noise figure of 4.3[Formula: see text]dB and shows high linearity with an input referred [Formula: see text] of [Formula: see text]2.7[Formula: see text]dB. The designed when operated using supply voltage of 1.2[Formula: see text]V consumes a total dc power of 8.9[Formula: see text]mW.


2019 ◽  
Vol 30 ◽  
pp. 01004
Author(s):  
Vadim Budnyaev ◽  
Valeriy Vertegel

This paper presents the simulation results of the W-band 3-stage low noise amplifier which is designed in 0.13 μm SiGe BiCMOS technology. The LNA achieves a peak S21 of 24.1 dB and noise figure of 6 dB at 80 GHz with 3 dB bandwidth of 14 GHz from 73 to 87 GHz. S11 is better than 11 dB. The simulated input 1 dB compression point is –23 dBm at 80 GHz with low power consumption of 26 mW from 1.2 V voltage supply. Layout area is 0.36 mm2.


Sign in / Sign up

Export Citation Format

Share Document