IMPERFECTIONS, A MAIN CONTRIBUTOR TO SCATTER IN EXPERIMENTAL VALUES OF BUCKLING LOAD

Author(s):  
W. H. HORTON ◽  
S. C. Durham
2015 ◽  
Vol 30 (9) ◽  
pp. 1175-1199
Author(s):  
Srinivasa Venkateshappa Chikkol ◽  
Prema Kumar Puttiah Wooday ◽  
Suresh Jayadevappa Yelaburgi

Experimental studies were made on isotropic cylindrical skew panels made of Aluminum 7075-T6 and laminated composite cylindrical skew panels under uniaxial compression. The experimental values of the critical buckling load ( Pcr) were determined using five different methods. The values of Pcr were also determined using MSC/Nastran and CQUAD8 finite element. The experimental values of the Pcr obtained by different methods were compared with the finite element solution. The effects of the skew angle and aspect ratio on the critical buckling load of isotropic cylindrical skew panels made of Aluminum 7075-T6 were studied. The effects of the skew angle, aspect ratio, and the laminate stacking sequence on the critical buckling load of laminated composite cylindrical skew panels were also studied. It is found that the method IV (based on a plot of applied load ( P) vs. average axial strain) yields the highest value for Pcr and method III (based on a plot of P vs. square of out-of-plane-deflection) the lowest value for Pcr. The experimental values given by method IV are seen to be closest to the finite element solution, the discrepancy being in the range of 5–23% for laminated composite cylindrical skew panels. For isotropic panels, it is found that the value Pcr initially increases with an increase in the skew angle and later decreases as the skew angle increases beyond 15°. For laminated composite panels, the Pcr value decreases as the aspect ratio increases for all laminate stacking sequences.


1972 ◽  
Vol 39 (2) ◽  
pp. 445-450 ◽  
Author(s):  
H. L. Schreyer

This paper presents an exact analysis for the buckling value of a concentrated load applied to a shallow circular arch. The effects of load offset and initial imperfections with the same form as the buckling mode are included. The results are displayed graphically and a comparison is made with experimental values that are available in the literature.


2015 ◽  
Vol 22 (3) ◽  
pp. 287-296 ◽  
Author(s):  
Srinivasa Chikkol Venkateshappa ◽  
Suresh Yalaburgi Jayadevappa ◽  
Prema Kumar Wooday Puttiah

AbstractExperimental studies were made on isotropic skew plates made of aluminum 7075-T6 and laminated composite skew plates under uniaxial compression with unloaded edges completely free and one loaded edge restrained completely and the other loaded edge restrained except translationally in the direction of loading. Experimental values of the buckling load have been determined using five different methods. The buckling load has also been determined using CQUAD8 finite element of MSC/NASTRAN. Comparison is made between the various experimental values of buckling load and the finite element solution. The effects of the skew angle and the aspect ratio on the critical buckling load of isotropic skew plates made of aluminum 7075-T6 have been studied. The effects of the skew angle, aspect ratio, and the laminate stacking sequence on the critical buckling load of laminated composite skew plates have also been studied. The critical buckling load is found to increase with the increase in the skew angle and decrease with the increase in aspect ratio. Method IV yields the highest value for critical buckling load and Method III the lowest value for critical buckling load. Among the various experimental values, the one given by Method IV is closest to the finite element solution, and the discrepancy between them is less than about 5% in the case of isotropic skew plates and about 10–15% in the case of laminated composite skew plates.


1969 ◽  
Vol 36 (1) ◽  
pp. 28-38 ◽  
Author(s):  
Johann A´rbocz ◽  
Charles D. Babcock

An experimental and theoretical investigation of the effect of general imperfections on the buckling load of a circular cylindrical shell under axial compression was carried out. A noncontact probe has been used to make complete imperfection surveys on electro-formed copper shells before and during the loading process up to the buckling load. The data recording process has been fully automated and the data reduction was done on an IBM 7094. Three-dimensional plots were obtained of the measured initial imperfection surfaces and of the growth of these imperfections under increasing axial load. The modal components of the measured imperfection surfaces were also obtained. The theoretical solution located the limit points of the postbuckled states. A simplified imperfection model was used consisting of one axisymmetric and two asymmetric components. For global buckling the correlation between the theoretical buckling loads and the experimental values was found to be good.


2015 ◽  
Vol 4 (2) ◽  
Author(s):  
R.B. Ashok ◽  
C.V Srinivasa ◽  
Y.J. Suresh ◽  
W.P. Prema Kumar

AbstractExperimental studies were made on isotropic cylindrical panels made of Aluminum 7075-T6 under uniaxial compression. The experimental values of the critical buckling load were determined using four different methods. The critical buckling load was also determined using MSC/NASTRAN and CQUAD8 finite element. The experimental values of the critical buckling load obtained by different methods were compared with the finite element solution. The effects of the panel angle, panel length and panel thickness on the critical buckling load of isotropic cylindrical panels made of Aluminum 7075-T6 were studied. It is found that the Method III (based on a plot of applied load versus average axial strain) yields the highest value for critical buckling load and Method II (based on a plot of applied load versus square of out-of-planede deflection) the lowest value for critical buckling load. The experimental values given by Method III are seen to be closest to the finite element solution. Critical buckling load increases monotonically as panel angle increases.


2019 ◽  
Author(s):  
Mazen Albazzan ◽  
Brian Tatting ◽  
Ramy Harik ◽  
Zafer Gürdal ◽  
Adriana Blom-Schieber ◽  
...  

The work of multilayer glass structures for central and eccentric compression and bending are considered. The substantiation of the chosen research topic is made. The description and features of laminated glass for the structures investigated, their characteristics are presented. The analysis of the results obtained when testing for compression, compression with bending, simple bending of models of columns, beams, samples of laminated glass was made. Overview of the types and nature of destruction of the models are presented, diagrams of material operation are constructed, average values of the resistance of the cross-sections of samples are obtained, the table of destructive loads is generated. The need for development of a set of rules and guidelines for the design of glass structures, including laminated glass, for bearing elements, as well as standards for testing, rules for assessing the strength, stiffness, crack resistance and methods for determining the strength of control samples is emphasized. It is established that the strength properties of glass depend on the type of applied load and vary widely, and significantly lower than the corresponding normative values of the strength of heat-strengthened glass. The effect of the connecting polymeric material and manufacturing technology of laminated glass on the strength of the structure is also shown. The experimental values of the elastic modulus are different in different directions of the cross section and in the direction perpendicular to the glass layers are two times less than along the glass layers.


Author(s):  
A.N. Shushpanov ◽  
◽  
A.Ya. Vasin ◽  
V.M. Raykova ◽  
G.G. Gadzhiev ◽  
...  

The article considers two intermediate products of positive photoresists (1,2-naphthoquinonediazide-(2)-5-sulfonic acid of monosodium salt — Dye M and 1,2-naphthoquinonediazide-(2)-5-sulfochloride — Dye N2) from the standpoint of the tendency to explosive transformation. The experimental values of flash points determined on the OTP setup were 130 °C for Dye M and 95 °C for Dye N2. These values are close to the temperatures of the beginning of intensive exothermic decomposition (132 and 111 °C, respectively) obtained by thermogravimetric analysis. In addition, this analysis showed the presence of exothermic peaks in the studied samples both in the air and in an inert atmosphere of helium, which is a necessary condition for the manifestation of a tendency to explosive transformation. To confirm the possibility of explosive transformation, the flash points of substances were also determined by the calculation method according to the formula, which is a consequence of the problem of thermal explosion during convective heat exchange with the environment, and gave a result close to the experimental one (the values were 138 and 105 °C, respectively). For this calculation the following was used: the kinetic parameters determined by the Kissinger method, the values of the density of substances determined on an automatic pycnometer, as well as the values of the heat of explosive transformation obtained with the help of the Real computer thermodynamic program. The research results confirming the tendency of the investigated compounds to explosive transformation, as well as the critical temperatures, exceeding which is unacceptable, were transferred to the production of FGUP GNTs NIOPIK to create a safe technological process, safe storage and transportation conditions. Considering the accuracy of the measuring devices, the process temperature should not exceed 125 °C for Dye M and 90 °C for Dye N2. The conducted studies and calculations show that the computational and experimental approaches have good convergence, give values in a close temperature range, and increase the reliability of the obtained results.


AIAA Journal ◽  
1998 ◽  
Vol 36 ◽  
pp. 1479-1485
Author(s):  
Anil L. Salunkhe ◽  
Prasanna M. Mujumdar

Sign in / Sign up

Export Citation Format

Share Document