Status of a Higher-Order Panel Method for Nonlifting Three-Dimensional Potential Flow.

Author(s):  
John L. Hess
1993 ◽  
Author(s):  
P. D. Sclavounos ◽  
D. E. Nakos

A three-dimensional panel method developed for the prediction of the seakeeping properties of conventional ships has been extended to predict the motions and added resistance of IACC Yachts. The method solves the three dimensional unsteady potential flow around the yacht in monochromatic oblique waves. Predicted quantities include the heave and pitch motion amplitudes and phases and added resistance over a broad range of wave frequencies yacht speeds. Computations have been carried out for a series of IACC hull shapes studied by PACT (Partnership for America's Cup Technology) and correlations with experimental measurements are found to be very satisfactory. The same method was also used to study the added-resistance properties of hull shapes supplied by the America3 Foundation. A sensitivity analysis was carried out of the added resistance on the principal yacht hull shape parameters, including the slenderness, displacement, LCB­LCF separation and pitch radius of gyration.


1986 ◽  
Vol 52 (484) ◽  
pp. 3993-4000
Author(s):  
Yutaka MIYAKE ◽  
Kiyoshi BANDOH ◽  
Yoshio MASUDA ◽  
Shigetaka NAGAMATSU

Aerospace ◽  
2020 ◽  
Vol 7 (5) ◽  
pp. 60
Author(s):  
Julia A. Cole ◽  
Mark D. Maughmer ◽  
Goetz Bramesfeld ◽  
Michael Melville ◽  
Michael Kinzel

An unsteady formulation of the Kutta–Joukowski theorem has been used with a higher-order potential flow method for the prediction of three-dimensional unsteady lift. This study describes the implementation and verification of the approach in detail sufficient for reproduction by future developers. Verification was conducted using the classical responses to a two-dimensional airfoil entering a sharp-edged gust and a sinusoidal gust with errors of less than 1% for both. The method was then compared with the three-dimensional unsteady lift response of a wing as modeled in two unsteady vortex-lattice methods. Results showed agreement in peak lift coefficient prediction to within 1% and 7%, respectively, and mean agreement within 0.25% for the full response.


2001 ◽  
Vol 09 (04) ◽  
pp. 1259-1286 ◽  
Author(s):  
MIGUEL R. VISBAL ◽  
DATTA V. GAITONDE

A high-order compact-differencing and filtering algorithm, coupled with the classical fourth-order Runge–Kutta scheme, is developed and implemented to simulate aeroacoustic phenomena on curvilinear geometries. Several issues pertinent to the use of such schemes are addressed. The impact of mesh stretching in the generation of high-frequency spurious modes is examined and the need for a discriminating higher-order filter procedure is established and resolved. The incorporation of these filtering techniques also permits a robust treatment of outflow radiation condition by taking advantage of energy transfer to high-frequencies caused by rapid mesh stretching. For conditions on the scatterer, higher-order one-sided filter treatments are shown to be superior in terms of accuracy and stability compared to standard explicit variations. Computations demonstrate that these algorithmic components are also crucial to the success of interface treatments created in multi-domain and domain-decomposition strategies. For three-dimensional computations, special metric relations are employed to assure the fidelity of the scheme in highly curvilinear meshes. A variety of problems, including several benchmark computations, demonstrate the success of the overall computational strategy.


2005 ◽  
Author(s):  
Paulo Henriques Iscold Andrade De Oliveira ◽  
Marcos Vinícius Bortolus

Sign in / Sign up

Export Citation Format

Share Document