DIABLO HAWK EVENT, Cavity Pressure Sensors Package Ground Shock Isolation Experiment.

1978 ◽  
Author(s):  
E. A. Day ◽  
W. G. Ginn
Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1168 ◽  
Author(s):  
Jian-Yu Chen ◽  
Chun-Ying Liu ◽  
Ming-Shyan Huang

Filling-to-packing switchover (also called V/P switchover) is critical for assuring injection molding quality. An improper V/P switchover setting may result in various defects of injection-molded parts, such as excessive residual stress, flash, short shot, and warpage, etc. To enhance a consistent molding quality, recent V/P switchover approaches adopt cavity pressure profiles requiring sensors embedded in mold cavities, which is invasive to mold cavities and more expensive. Instead of using cavity pressure sensors, by working with the most popular screw position switchover control, this study hereby proposes a novel approach of tuning V/P switchover timing using a tie-bar elongation profile. In this investigation, a dumbbell testing specimen mold is applied to verify the feasibility of the method proposed. The results show that the mold filling and packing stages can be observed along the tie-bar elongation profile, detected by mounting strain gauges on the tie bars. Also, the characteristics of the cavity pressure are similar to those of the tie-bar elongation profile under a proper clamping force condition. Moreover, the varying process parameter settings which include injection speed, V/P switchover point, and holding pressure, can be reflected in these profiles. By extracting their characteristics, the application of the V/P switchover is proved to be realistic. This research conducted an experiment to verify the proposed V/P switchover decision method based on the tie-bar elongation profile. The result showed that the fluctuation of the part’s weight corresponding to a slight change of the barrel’s temperature from 210 °C to 215 °C can be successfully controlled with this method. Besides, the maximum clamping force increment extracted from the tie-bar elongation profile was found to be a good indicator for online monitoring of the reground material variation.


2014 ◽  
Author(s):  
Catalin Fetecau ◽  
Felicia Stan ◽  
Laurentiu I. Sandu

This paper focuses on the in-mold monitoring of temperature and cavity pressure. The melt contact temperature and the cavity pressure along the flow path were directly measured using two pressure sensors and two temperature sensors fitted into the cavity of a spiral mold. Three melt temperatures and dies of different heights (1.0, 1.5 and 2 mm) were used to achieve a wide range of practically relevant shear rates. In order to analyze the extent to which the numerical simulation can predict the behavior of the molten polymer during the injection molding process, molding experiments were simulated using the Moldflow software and the simulation results were compared with the experimental data under the same injection molding conditions.


NANO ◽  
2019 ◽  
Vol 14 (10) ◽  
pp. 1950130 ◽  
Author(s):  
Xin Lin ◽  
Ying Liu ◽  
Yong Zhang ◽  
Peng Yang ◽  
Xianzhe Cheng ◽  
...  

A polymer-assisted pressure sensor with piezoresistive suspended graphene is proposed and fabricated with high yield. Our sensor exhibits a good pressure response comparable to that of commercial sensors. The sensitivity is estimated to be [Formula: see text][Formula: see text]kPa[Formula: see text], higher than that of similar Si-based pressure sensors. The influence of the temperature on the sensor performance is systematically analyzed. An inverse temperature response is observed, and a nonnegligible temperature effect on the sensor resistance is demonstrated. Considering the temperature-induced cavity pressure change, a new temperature–resistance model is built to explain the nonlinearity of the sensor response to the temperature variation. Experiments under different test voltages show the influence of the current thermal effect, which is similar to that of temperature and nonnegligible for high-precision pressure sensors. Our new sensor holds great potential for practical application, and the findings on the temperature characteristics open up a route to further improve the sensor performance.


Author(s):  
M. S. ASSAD ◽  
◽  
O. G. PENYAZKOV ◽  
I. I. CHERNUHO ◽  
K. ALHUSSAN ◽  
...  

This work is devoted to the study of the dynamics of combustion wave propagation in oxygen-enriched mixtures of n-heptane with air and jet fuel "Jet A-1" in a small-size pulsed detonation combustor (PDC) with a diameter of 20 mm and a length less than 1 m. Experiments are carried out after the PDC reaches a stationary thermal regime when changing the equivalence ratio (ϕ = 0.73-1.89) and the oxygen-to-air ratio ([O2/air] = 0.15-0.60). The velocity of the combustion wave is determined by measuring the propagation time of the flame front between adjacent pressure sensors that form measurement segements along the PDC.


Sign in / Sign up

Export Citation Format

Share Document