scholarly journals Comparison of Soil Freezing Curve and Soil Water Curve Data for Windsor Sandy Loam

Author(s):  
Patrick B. Black ◽  
Allen R. Tice
1989 ◽  
Vol 25 (10) ◽  
pp. 2205-2210 ◽  
Author(s):  
Patrick B. Black ◽  
Allen R. Tice

2014 ◽  
Vol 34 (2) ◽  
pp. 203-210 ◽  
Author(s):  
Fernando da S. Barbosa ◽  
Rubens D. Coelho ◽  
Rafael Maschio ◽  
Carlos J. G. de S. Lima ◽  
Everaldo M. da Silva

Soil water availability is the main cause of reduced productivity, and the early development period most sensitive to water deficit. This study aimed to evaluate the drought resistance of the varieties of sugar-cane RB867515 and SP81-3250 during the early development using different levels of water deficit on four soil depths. The experiment was conducted at the Department of Biosystems at Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ/USP) in a greenhouse in soil classified as Oxisol, sandy loam texture (Series "Sertãozinho"). Once exhausted the level of available water in the soil, the dry strength of the studied strains are relatively low. Water balance with values less than -13 mm cause a significant decrease in the final population of plants, regardless of the variety, and values below -35 mm, leads to the death of all plants.


Soil Research ◽  
1977 ◽  
Vol 15 (3) ◽  
pp. 205 ◽  
Author(s):  
AR Aston ◽  
FX Dunin

An empirical relationship was derived for drainage from a podzolic sandy loam using a weighing lysimeter at Krawarree, N.S.W. The form of the equation was similar to those used to describe drainage following irrigation. The agreement between computed and measured soil moisture contents over a period of five years was good, and indicated the usefulness of such an approach to characterize drainage of soil water under natural field conditions.


2017 ◽  
pp. 1.9-1.19 ◽  
Author(s):  
Afua Mante ◽  
Ramanathan Sri Ranjan

The HYDRUS (2D/3D) modeling tool was used to simulate water flow through subsurface-drained sandy loam soil under potato (Solanum tuberosum) cultivation in Southern Manitoba. The model was used to simulate water flow through a 2-D model domain of dimensions, 15 m width × 2.5 m depth. The model was calibrated and validated with field data measured during the growing season of year 2011 at the Hespler Farms, Winkler, Manitoba. Field measurements, including soil water content and watertable depth, for two test plots under subsurface free drainage were used for the calibration and validation. Weather data were also obtained to estimate reference crop evapotranspiration, which was used as input data in the model. Based on the reference crop evapotranspiration, and crop coefficient of the potato crop, the actual crop evapotranspiration was estimated and compared to the simulated actual crop evapotranspiration results. The results showed that the model was able to account for 50% to 78% of the variation in the estimated actual crop evapotranspiration. With respect to water flow through the soil, the observed soil water content and the simulated soil water content were compared using graphical and quantitative analysis. Based on the coefficient of determination (R2), the model accounted for 68% to 89% variation in the observed data. The intercept of the regression line varied from 0.01 to 0.08, and the slope, 0.75 to 0.99. The Nash–Sutcliffe modeling efficiency coefficient (NSE) varied from 0.62-0.89, the Percent bias (PBIAS) values varied from -1.99% to 1.16%. The root mean square error-observations standard deviation ratio (RSR) values varied from 0.33 to 0.61. The values for the evaluation parameters show that the model was able to simulate the water flow through the soil profile reasonably well.


2018 ◽  
Vol 111 ◽  
pp. 319-328 ◽  
Author(s):  
Erfan A. Amiri ◽  
James R. Craig ◽  
Barret L. Kurylyk
Keyword(s):  

2001 ◽  
Vol 81 (1) ◽  
pp. 45-52 ◽  
Author(s):  
R H Azooz ◽  
M A Arshad

In areas of the northwestern Canadian Prairies, barley and canola are grown in a short growing season with high rainfall variability. Excessively dry soil in conventional tillage (CT) in dry periods and excessively wet soil in no-tillage (NT) in wet periods could cause a significant decrease in crop production by influencing the availability of soil water. The effects of CT, NT and NT with a 7.5-cm residue-free strip on the planting rows (NTR) on soil water drying (–dW/dt) and recharge (dW/dt) rates were studied in 1992 and 1993 during wet and dry periods to evaluate the impact of NTR, NT and CT systems on soil moisture condition. The soils, Donnelly silt loam and Donnelly sandy loam (both Gray Luvisol) were selected and soil water content by depth was measured by time domain reflectometry. Water retained at 6 matric potentials from –5 to –160 kPa were observed. In the field study, –dW/dt was significantly greater in CT than in NT in the silt loam for the 0- to 30-cm layer during the first 34 d after planting in 1992. The 0- to 30-cm soil layer in CT and NTR dried faster than in NT during a period immediately following heavy rainfall in the silt loam in 1993. The drying coefficient (–Kd ) was significantly greater in CT and NTR than in NT in the silt loam soil in 1993 and in the sandy loam soil in 1992 in the top 30-cm depth. The recharge coefficient (Kr) was significantly greater in NT and NTR than in CT for the silt loam soil. The NTR system increased the –dW/dt by 1.2 × 10-2 to 12.1 × 10-2 cm d-1 in 1992 and 1993 in the silt loam soil and by 10.2 × 10-2 cm d-1 in 1993 in the sandy loam soil as compared with NT. The dW/dt was 8.1 × 10-2 cm d-1 greater in NTR in 1992 and 1993 in the silt loam soil and was 1.9 × 10-2 greater in NTR in 1992 than in CT in the sandy loam soil. The laboratory study indicated that NT soils retained more water than the CT soils. The NTR practice maintained better soil moisture conditions for crop growth than CT in dry periods than NT in wet periods. Compared with NT, the NTR avoided prolonged near-saturated soil conditions with increased soil drying rate under extremely wet soil. Key words: Water drying, water recharge, water depletion, wet and drying periods, hydraulic properties, soil capacity to retain water


2006 ◽  
Vol 144 (3) ◽  
pp. 229-235 ◽  
Author(s):  
S. G. SOMMER ◽  
L. S. JENSEN ◽  
S. B. CLAUSEN ◽  
H. T. SØGAARD

Volatilization of ammonia (NH3) from slurry applied in the field is considered a risk to the environment and reduces the fertilizer value of the slurry. To reduce volatilization a better understanding of the slurry–soil interaction is needed. Therefore, the present study focuses on measuring NH3 volatilization as affected by differences in infiltration. Livestock slurries with different dry matter (DM) composition and viscosity were included in the experiments by using untreated cattle and pig slurry, pig slurry anaerobically digested in a biogas plant and pig slurry anaerobically digested and physically separated. NH3 volatilization was measured using dynamic chambers and related to infiltration of the livestock slurries in the soil by measuring chloride (Cl−) and Total Ammoniacal Nitrogen (TAN=ammonium (NH4+)+NH3) concentrations in soil at different depths from 0·5 to 6·0 cm from the soil surface. The slurries were applied to sandy and sandy-loam soils packed in boxes within the chambers. There were no significant differences in relative volatilization of NH3 from untreated cattle and pig slurries, but anaerobic digestion of pig slurry increased volatilization due to increases in pH. However, physical separation of the digested slurry reduced the volatilization compared with untreated slurry, due to increased infiltration. In general, the volatilization decreased significantly with increased infiltration. The present study shows that NH3 volatilization from applied slurry can be related to infiltration and that infiltration is related to slurry composition (i.e. DM content and particle size distribution) and soil water content. The infiltration of liquid (measured by Cl− infiltration) was affected by soil water potential, therefore, Cl− infiltrated deeper into the sandy loam soil than the sandy soil at similar gravimetric soil water values. Dry matter (DM) and large particles (>1 mm) of the slurry reduced infiltration of liquid. A high proportion of small particles (<0·025 mm) facilitated infiltration of TAN.


Soil Research ◽  
2020 ◽  
Vol 58 (4) ◽  
pp. 379
Author(s):  
Priscilla Johnston ◽  
Michael Braunack ◽  
Philip S. Casey ◽  
Keith L. Bristow ◽  
Raju Adhikari

This glasshouse pot experiment demonstrated that a new sprayable and degradable polymer reduced soil water evaporation and promoted cotton seedling emergence and establishment. The polymer was tested on two contrasting soils (sandy loam and clay), representative of those used to grow cotton in Australia. Changes in soil water content in non-treated and polymer-treated pots were monitored over 80 days, after surface or subsurface watering. Plant biomass, soil water content and soil chemical properties were determined at harvest. The polymer reduced soil water evaporation by up to 35% in sandy loam and up to 20% in clay, did not compromise seedling emergence and improved plant growth per unit water applied by up to 26.2%. The polymer underwent extensive degradation after 80 days to produce low molecular-weight polymers or oligomers and water-extractable silicon species that may have implications for plant nutrition.


Sign in / Sign up

Export Citation Format

Share Document