Sound Intensity Prediction System (SIPS): Volume I - Reference Manual

Author(s):  
Michael M. Kordich ◽  
Dean A. Pollet
2019 ◽  
Vol 147 (9) ◽  
pp. 3409-3428 ◽  
Author(s):  
Jan-Huey Chen ◽  
Shian-Jiann Lin ◽  
Linjiong Zhou ◽  
Xi Chen ◽  
Shannon Rees ◽  
...  

Abstract A new global model using the GFDL nonhydrostatic Finite-Volume Cubed-Sphere Dynamical Core (FV3) coupled to physical parameterizations from the National Centers for Environmental Prediction’s Global Forecast System (NCEP/GFS) was built at GFDL, named fvGFS. The modern dynamical core, FV3, has been selected for the National Oceanic and Atmospheric Administration’s Next Generation Global Prediction System (NGGPS) due to its accuracy, adaptability, and computational efficiency, which brings a great opportunity for the unification of weather and climate prediction systems. The performance of tropical cyclone (TC) forecasts in the 13-km fvGFS is evaluated globally based on 363 daily cases of 10-day forecasts in 2015. Track and intensity errors of TCs in fvGFS are compared to those in the operational GFS. The fvGFS outperforms the GFS in TC intensity prediction for all basins. For TC track prediction, the fvGFS forecasts are substantially better over the northern Atlantic basin and the northern Pacific Ocean than the GFS forecasts. An updated version of the fvGFS with the GFDL 6-category cloud microphysics scheme is also investigated based on the same 363 cases. With this upgraded microphysics scheme, fvGFS shows much improvement in TC intensity prediction over the operational GFS. Besides track and intensity forecasts, the performance of TC genesis forecast is also compared between the fvGFS and operational GFS. In addition to evaluating the hit/false alarm ratios, a novel method is developed to investigate the lengths of TC genesis lead times in the forecasts. Both versions of fvGFS show higher hit ratios, lower false alarm ratios, and longer genesis lead times than those of the GFS model in most of the TC basins.


2005 ◽  
Vol 133 (9) ◽  
pp. 2635-2649 ◽  
Author(s):  
I-I. Lin ◽  
Chun-Chieh Wu ◽  
Kerry A. Emanuel ◽  
I-Huan Lee ◽  
Chau-Ron Wu ◽  
...  

Abstract Understanding the interaction of ocean eddies with tropical cyclones is critical for improving the understanding and prediction of the tropical cyclone intensity change. Here an investigation is presented of the interaction between Supertyphoon Maemi, the most intense tropical cyclone in 2003, and a warm ocean eddy in the western North Pacific. In September 2003, Maemi passed directly over a prominent (700 km × 500 km) warm ocean eddy when passing over the 22°N eddy-rich zone in the northwest Pacific Ocean. Analyses of satellite altimetry and the best-track data from the Joint Typhoon Warning Center show that during the 36 h of the Maemi–eddy encounter, Maemi’s intensity (in 1-min sustained wind) shot up from 41 m s−1 to its peak of 77 m s−1. Maemi subsequently devastated the southern Korean peninsula. Based on results from the Coupled Hurricane Intensity Prediction System and satellite microwave sea surface temperature observations, it is suggested that the warm eddies act as an effective insulator between typhoons and the deeper ocean cold water. The typhoon’s self-induced sea surface temperature cooling is suppressed owing to the presence of the thicker upper-ocean mixed layer in the warm eddy, which prevents the deeper cold water from being entrained into the upper-ocean mixed layer. As simulated using the Coupled Hurricane Intensity Prediction System, the incorporation of the eddy information yields an evident improvement on Maemi’s intensity evolution, with its peak intensity increased by one category and maintained at category-5 strength for a longer period (36 h) of time. Without the presence of the warm ocean eddy, the intensification is less rapid. This study can serve as a starting point in the largely speculative and unexplored field of typhoon–warm ocean eddy interaction in the western North Pacific. Given the abundance of ocean eddies and intense typhoons in the western North Pacific, these results highlight the importance of a systematic and in-depth investigation of the interaction between typhoons and western North Pacific eddies.


2019 ◽  
Author(s):  
Takao Sasaki ◽  
Asril ◽  
Yoshinori Furumoto ◽  
Chisa Hikime ◽  
Tetsuya Oba

2020 ◽  
Vol 2 (1) ◽  
pp. 137-164
Author(s):  
Narges Firouzshahi ◽  
Elena Babatsouli

The present article proposes a sociolinguistic stance in the dissemination of information for use in the clinical context of speech language pathology (SLP) internationally. This practical guide to speech and culture aims to encourage the integration of linguistic and cultural facets in clinical practicum approaches, providing a useful and clinically relevant resource. This comes as a natural consequence of the systematic efforts worldwide to train and inform SLP workforces on providing equitable, targeted, and appropriate service to linguistically and culturally diverse clients such as minorities and immigrants. The specific focus of this guide is on Iranian Persian, a language and culture that is under-represented in published, clinically relevant literature. The paper provides an easily accessible reference manual on the phonological development and clinical assessment of Iranian Persian child speech in typical and atypical, monolingual and bilingual contexts, as well as on cultural aspects that may dictate the success of clinician and client/family interactions.


1993 ◽  
Vol 21 (2) ◽  
pp. 66-90 ◽  
Author(s):  
Y. Nakajima ◽  
Y. Inoue ◽  
H. Ogawa

Abstract Road traffic noise needs to be reduced, because traffic volume is increasing every year. The noise generated from a tire is becoming one of the dominant sources in the total traffic noise because the engine noise is constantly being reduced by the vehicle manufacturers. Although the acoustic intensity measurement technology has been enhanced by the recent developments in digital measurement techniques, repetitive measurements are necessary to find effective ways for noise control. Hence, a simulation method to predict generated noise is required to replace the time-consuming experiments. The boundary element method (BEM) is applied to predict the acoustic radiation caused by the vibration of a tire sidewall and a tire noise prediction system is developed. The BEM requires the geometry and the modal characteristics of a tire which are provided by an experiment or the finite element method (FEM). Since the finite element procedure is applied to the prediction of modal characteristics in a tire noise prediction system, the acoustic pressure can be predicted without any measurements. Furthermore, the acoustic contribution analysis obtained from the post-processing of the predicted results is very helpful to know where and how the design change affects the acoustic radiation. The predictability of this system is verified by measurements and the acoustic contribution analysis is applied to tire noise control.


Author(s):  
Sterling McBride ◽  
Ricardo Burdisso ◽  
Corina Sandu

ABSTRACT Tire-pavement interaction noise (TPIN) is one of the main sources of exterior noise produced by vehicles traveling at greater than 50 kph. The dominant frequency content is typically within 500–1500 Hz. Structural tire vibrations are among the principal TPIN mechanisms. In this work, the structure of the tire is modeled and a new wave propagation solution to find its response is proposed. Multiple physical effects are accounted for in the formulation. In an effort to analyze the effects of curvature, a flat plate and a cylindrical shell model are presented. Orthotropic and nonuniform structural properties along the tire's transversal direction are included to account for differences between its sidewalls and belt. Finally, the effects of rotation and inflation pressure are also included in the formulation. Modeled frequency response functions are analyzed and validated. In addition, a new frequency-domain formulation is presented for the computation of input tread pattern contact forces. Finally, the rolling tire's normal surface velocity response is coupled with a boundary element model to demonstrate the radiated noise at the leading and trailing edge locations. These results are then compared with experimental data measured with an on-board sound intensity system.


OCEANS 2009 ◽  
2009 ◽  
Author(s):  
Nan Walker ◽  
Robert Leben ◽  
Steven Anderson ◽  
Alaric Haag ◽  
Chet Pilley ◽  
...  

2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Konrad Nering

AbstractThis paper describes a fully functional short-term flood prediction system. Its effect has been tested on watershed of Lubieńka river in Małopolska. To use this system it must have a data set also described in this paper. A modification of the system to adopt for predicting flash floods was described. Full operation of the system is shown on example of real flood on Lubieńka river in June 2011.


Sign in / Sign up

Export Citation Format

Share Document