Highly Nonlinear Algorithms for Wavelet Based Image Processing With Military Applications

2001 ◽  
Author(s):  
Ronald A. DeVore ◽  
Pencho Petrushev
Author(s):  
Mohamed Elhoseny ◽  
Ahmed Farouk ◽  
Josep Batle ◽  
Abdulaziz Shehab ◽  
Aboul Ella Hassanien

WSN as a new category of computer-based computing platforms and network structures is showing new applications in different areas such as environmental monitoring, health care and military applications. Although there are a lot of secure image processing schemas designed for image transmission over a network, the limited resources and the dynamic environment make it invisible to be used with Wireless Sensor Networks (WSNs). In addition, the current secure data transmission schemas in WSN are concentrated on the text data and are not applicable for image transmission's applications. Furthermore, secure image transmission is a big challenging issue in WSNs especially for the application that uses image as its main data such as military applications. The reason why is because the limited resources of the sensor nodes which are usually deployed in unattended environments. This chapter introduces a secure image processing and transmission schema in WSN using Elliptic Curve Cryptography (ECC) and Homomorphic Encryption (HE).


Author(s):  
David Procházka ◽  
Tomáš Koubek

Augmented reality has became an useful tool in many areas from space exploration to military applications. Although used theoretical principles are well known for almost a decade, the augmented reality is almost exclusively used in high budget solutions with a special hardware. However, in last few years we could see rising popularity of many projects focused on deployment of the augmented reality on dif­ferent mobile devices. Our article is aimed on developers who consider development of an augmented reality application for the mainstream market. Such developers will be forced to keep the application price, therefore also the development price, at reasonable level. Usage of existing image processing software library could bring a significant cut-down of the development costs. In the theoretical part of the article is presented an overview of the augmented reality application structure. Further, an approach for selection appropriate library as well as the review of the existing software libraries focused in this area is described. The last part of the article out­lines our implementation of key parts of the augmented reality application using the OpenCV library.


2020 ◽  
pp. 698-715
Author(s):  
Mohamed Elhoseny ◽  
Ahmed Farouk ◽  
Josep Batle ◽  
Abdulaziz Shehab ◽  
Aboul Ella Hassanien

WSN as a new category of computer-based computing platforms and network structures is showing new applications in different areas such as environmental monitoring, health care and military applications. Although there are a lot of secure image processing schemas designed for image transmission over a network, the limited resources and the dynamic environment make it invisible to be used with Wireless Sensor Networks (WSNs). In addition, the current secure data transmission schemas in WSN are concentrated on the text data and are not applicable for image transmission's applications. Furthermore, secure image transmission is a big challenging issue in WSNs especially for the application that uses image as its main data such as military applications. The reason why is because the limited resources of the sensor nodes which are usually deployed in unattended environments. This chapter introduces a secure image processing and transmission schema in WSN using Elliptic Curve Cryptography (ECC) and Homomorphic Encryption (HE).


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


2000 ◽  
Vol 179 ◽  
pp. 229-232
Author(s):  
Anita Joshi ◽  
Wahab Uddin

AbstractIn this paper we present complete two-dimensional measurements of the observed brightness of the 9th November 1990Hαflare, using a PDS microdensitometer scanner and image processing software MIDAS. The resulting isophotal contour maps, were used to describe morphological-cum-temporal behaviour of the flare and also the kernels of the flare. Correlation of theHαflare with SXR and MW radiations were also studied.


Author(s):  
M.A. O'Keefe ◽  
W.O. Saxton

A recent paper by Kirkland on nonlinear electron image processing, referring to a relatively new textbook, highlights the persistence in the literature of calculations based on incomplete and/or incorrect models of electron imageing, notwithstanding the various papers which have recently pointed out the correct forms of the appropriate equations. Since at least part of the problem can be traced to underlying assumptions about the illumination coherence conditions, we attempt to clarify both the assumptions and the corresponding equations in this paper, illustrating the effects of an incorrect theory by means of images calculated in different ways.The first point to be made clear concerning the illumination coherence conditions is that (except for very thin specimens) it is insufficient simply to know the source profiles present, i.e. the ranges of different directions and energies (focus levels) present in the source; we must also know in general whether the various illumination components are coherent or incoherent with respect to one another.


Author(s):  
R.W. Horne

The technique of surrounding virus particles with a neutralised electron dense stain was described at the Fourth International Congress on Electron Microscopy, Berlin 1958 (see Home & Brenner, 1960, p. 625). For many years the negative staining technique in one form or another, has been applied to a wide range of biological materials. However, the full potential of the method has only recently been explored following the development and applications of optical diffraction and computer image analytical techniques to electron micrographs (cf. De Hosier & Klug, 1968; Markham 1968; Crowther et al., 1970; Home & Markham, 1973; Klug & Berger, 1974; Crowther & Klug, 1975). These image processing procedures have allowed a more precise and quantitative approach to be made concerning the interpretation, measurement and reconstruction of repeating features in certain biological systems.


Author(s):  
R. C. Gonzalez

Interest in digital image processing techniques dates back to the early 1920's, when digitized pictures of world news events were first transmitted by submarine cable between New York and London. Applications of digital image processing concepts, however, did not become widespread until the middle 1960's, when third-generation digital computers began to offer the speed and storage capabilities required for practical implementation of image processing algorithms. Since then, this area has experienced vigorous growth, having been a subject of interdisciplinary research in fields ranging from engineering and computer science to biology, chemistry, and medicine.


Sign in / Sign up

Export Citation Format

Share Document