Secure Image Processing and Transmission Schema in Cluster-Based Wireless Sensor Network

Author(s):  
Mohamed Elhoseny ◽  
Ahmed Farouk ◽  
Josep Batle ◽  
Abdulaziz Shehab ◽  
Aboul Ella Hassanien

WSN as a new category of computer-based computing platforms and network structures is showing new applications in different areas such as environmental monitoring, health care and military applications. Although there are a lot of secure image processing schemas designed for image transmission over a network, the limited resources and the dynamic environment make it invisible to be used with Wireless Sensor Networks (WSNs). In addition, the current secure data transmission schemas in WSN are concentrated on the text data and are not applicable for image transmission's applications. Furthermore, secure image transmission is a big challenging issue in WSNs especially for the application that uses image as its main data such as military applications. The reason why is because the limited resources of the sensor nodes which are usually deployed in unattended environments. This chapter introduces a secure image processing and transmission schema in WSN using Elliptic Curve Cryptography (ECC) and Homomorphic Encryption (HE).

2020 ◽  
pp. 698-715
Author(s):  
Mohamed Elhoseny ◽  
Ahmed Farouk ◽  
Josep Batle ◽  
Abdulaziz Shehab ◽  
Aboul Ella Hassanien

WSN as a new category of computer-based computing platforms and network structures is showing new applications in different areas such as environmental monitoring, health care and military applications. Although there are a lot of secure image processing schemas designed for image transmission over a network, the limited resources and the dynamic environment make it invisible to be used with Wireless Sensor Networks (WSNs). In addition, the current secure data transmission schemas in WSN are concentrated on the text data and are not applicable for image transmission's applications. Furthermore, secure image transmission is a big challenging issue in WSNs especially for the application that uses image as its main data such as military applications. The reason why is because the limited resources of the sensor nodes which are usually deployed in unattended environments. This chapter introduces a secure image processing and transmission schema in WSN using Elliptic Curve Cryptography (ECC) and Homomorphic Encryption (HE).


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4281
Author(s):  
Ngoc-Thanh Dinh ◽  
Younghan Kim

Wireless sensor network (WSN) studies have been carried out for multiple years. At this stage, many real WSNs have been deployed. Therefore, configuration and updating are critical issues. In this paper, we discuss the issues of configuring and updating a wireless sensor network (WSN). Due to a large number of sensor nodes, in addition to the limited resources of each node, manual configuring turns out to be impossible. Therefore, various auto-configuration approaches have been proposed to address the above challenges. In this survey, we present a comprehensive review of auto-configuration mechanisms with the taxonomy of classifications of the existing studies. For each category, we discuss and compare the advantages and disadvantages of related schemes. Lastly, future works are discussed for the remaining issues in this topic.


2014 ◽  
Vol 543-547 ◽  
pp. 3017-3022 ◽  
Author(s):  
Tristan Daladier Engouang ◽  
Liu Yun ◽  
Zhen Jiang Zhang

Tiny autonomous embedded electronics (sensor nodes) devices able to communicate through wireless channels are ensuring the emission and reception of data through a communication radio between two sensors grouped by hundreds and thousands within Wireless Sensor Networks (WSNs). These amazing new technology with ongoing research worldwide, are merging networking, systems hardware, systems software and programming methodologies thus enabling applications that previously were not practical. Hence numerical simulations on computers can now visualize the physical world phenomena that could be observed through empirical means, as sensors are deployed in a dedicated environment, to fulfill their aim of sensing for any occurrence of the event of interest. The data sensed by these wireless sensors are now very sensitive, thus need to be fully protected by all means, which is why T. D. Engouang et al., argued that securityand reliability and also durability are mandatory when deploying any sensor nodes or hard device. The Pallier based homomorphic encryption data aggregation is proposed with security measures preserving data integrity and privacy.


2019 ◽  
Vol 8 (4) ◽  
pp. 12377-12385

Wireless sensor network is formed with limited energy resources, easily compromised by an adversary because of hostile environments. Adversary may use compromised nodes to inject false reports and launch DoS attacks, thus, sensor nodes are prone to failure and which makes the network topology configurations highly dynamic in real world applications. A variety of en-route filtering schemes have been proposed to drop and defeat these attacks by using their own cryptographic methods. Some of them ask for a fixed path between a base station and each cluster, so they are not feasible for dynamic network. Additionally, other proposals do not consider various environmental variables in a dynamic environment, so they only choose static paths. In contrast, we consider topology changes, communication costs, the maximum number of key dissemination hops, and the spread of nodes for providing optimum filtering capacity. This paper presents a fuzzy-based adaptive multipath selection method in dynamic environment of a wireless sensor network. Our proposed method can adjust the optimized number of multipaths during key dissemination. Experimental results show that relatively higher filtering capacity with lower energy consumption and suitable nodes for highly dynamic networks.


Wireless Sensor Network (WSN) is developed extremely because of their low installation cost and various applications. WSN has compact and inexpensive sensor nodes for monitoring the physical environment. WSNs are susceptible to many attacks (e.g. malicious nodes) because of its distinct characteristics. The performance of node and network is affected by the malicious nodes. Moreover, the communication among the sensor nodes also required to be secured for preventing the data from the hackers. In this paper, the architecture of the WSN is generated by using the Fuzzy-C-Means clustering (FCM). Then the detection of the malicious nodes is performed by using the Acknowledgement Scheme (AS). This AS is integrated in the Ant Colony Optimization (ACO) based routing for avoiding the malicious nodes while generating the route from the source to the Base Station (BS). Then the Hybrid Encryption Algorithm (HEA) is used for performing the secure data transmission through the network and this proposed method is named as HEA-AS. The performance of the HEA-AS method is evaluated in terms of End to End Delay (EED), network lifetime, throughput, Packet Delivery Ratio (PDR) and Packet Loss Ratio (PLR). The proposed HEA-AS method is compared with the existing method called as CTCM to evaluate the effectiveness of the HEA-AS method.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Yu Song ◽  
Zhigui Liu ◽  
Xiaoli He

Compared with traditional networks, WSNs have more limited resources such as energy, communication, computing, and storage. The problem of how to achieve energy saving, extend network life cycle, and improve network performance under these limited resources has always been an issue of great interest in WSN research. However, existing protocols do not consider that sensor nodes within the BS threshold may not be clustered. These nodes can directly transmit data to the BS. This simplifies the cluster routing process of the entire WSN and saves more energy. This paper introduces an efficient, and energy-efficient, clustering and equalization routing protocol called the PSOLB-EGT protocol. This protocol introduces a new approach by combining improved particle swarm optimization (PSO) and evolutionary game theory (EGT) algorithms to address the problem of maximizing the network lifetime. The operation of the wireless sensor network is divided into an initialization phase and a data transmission phase. In the initialization phase of the wireless sensor network, the improved PSO algorithm is used to establish clusters and select CHs in areas other than the BS threshold. Entering the data transmission phase, we analyze this problem from the perspective of game theory. We use improved noncooperative evolutionary game theory to build models to solve the problem of the energy waste caused by routing congestion. The proposed PSOLB-EGT protocol is intensively experimented with a number of topologies in various network scenarios, and the results are compared with the well-known cluster-based routing protocols that include the swarm intelligence-based protocols. The obtained results prove that the proposed protocol has increased 9%, 8%, and 5% compared with the ABC-SD protocol in terms of network life, network coverage, and amount of data transmitted, respectively.


2017 ◽  
Vol 10 (13) ◽  
pp. 328
Author(s):  
Shahina K ◽  
Vaidehi Vijayakumar

Wireless sensor networks are energy constrained. Data aggregation is an important mechanism for achieving energy efficiency in such networks. The aggregation reduces redundancy in data transmission which results in improved energy usage. Several security issues are there in data aggregation, which includes data confidentiality, data integrity, availability, and freshness. Such issues become complex since WSN is deployed in hostile and unattended environment. So the sensor nodes may fail and compromised by adversaries. Secured data aggregation in sensor network is a topic of research.  Many solutions are proposed for secured data aggregation, using different encryption methods. Homomorphic encryption is one of such technique. In homomorphic encryption, all the nodes participate in the aggregation. Here, nodes can’t see any intermediate or final result but the aggregation is efficient. In this paper, secured data aggregation methods are classified and the performance is compared in terms of integrity and confidentiality.


Author(s):  
Muhammad Ayaz ◽  
Azween Abdullah ◽  
Ibrahima Faye

Underwater Wireless Sensor Networks (UWSNs) are finding different applications for offshore exploration and ocean monitoring. In most of these applications, the network consists of a significant number of sensor nodes deployed at different depth levels throughout the area of interest. Sensor nodes on the sea bed cannot communicate directly with the nodes near the surface level, so they require multihop communication assisted by an appropriate routing scheme. However, this appropriateness not only depends on network resources and application requirements, but environment constraints are involved as well. These factors all provide a platform where a resource aware routing strategy plays a vital role in fulfilling different application requirements with dynamic environment conditions. Realizing this fact, much of the attention has been given to construct a reliable scheme, and many routing protocols have been proposed in order to provide efficient route discoveries between the source and sink. In this chapter, the authors present a review and comparison of different algorithms proposed recently for underwater sensor networks. Later on, all of these have been classified into different groups according to their characteristics and functionalities.


Author(s):  
Arvind Madhukar Jagtap ◽  
Gomathi N.

In the past years, wireless sensor networks (WSNs) have increased successful real-world deployment in a wide range of civil and military applications. In order to ensure effective environmental sensing and robust communication, the two fundamental issues like TCOV and NCON are the very challenging tasks in WSN. As sensor nodes are battery-operated devices, the wide utilization of WSNs is obstructed by the severely limited energy constraints, this article tackles these kinds of issues by proposing an approach based on the energy model and aims at enhancing the network lifetime by improved balancing the movement and energy losses in the network. This article proposes a design which minimizes the power consumption and movement cost, thus enhancing the network lifetime. Finally, the authors compared the energy efficiency of the proposed approach with that of the existing approach. As such, the proposed AVABC improves the network lifetime by 14.29%, 26.09%, and 14.29% over VABC in response to the varying sensing radius of 5, 10, and 15, respectively.


Sign in / Sign up

Export Citation Format

Share Document