Telerobotic Control Architecture Including Force-Reflection

1998 ◽  
Author(s):  
Mark A. Murphy ◽  
Robert L. Williams ◽  
III
2011 ◽  
Vol 199-200 ◽  
pp. 1211-1216 ◽  
Author(s):  
Jian Jun Meng ◽  
Jin Tian Yun

The two-port network theory for describing the characteristics of the haptic interface is presented; the four-channel bilateral control architecture is introduced, and two control methods named position-error-based control and direct force reflection control (PEBC & DFRC) are also presented. Two main problems caused by the coupling between position and force information for transparency improvement of the haptic interface are also be discussed and a Model-Based Force-Position Compensation Strategy to enhance the transparency of the haptic interface is proposed. By embedding the compensation unit into the DFRC architecture, the Haptic Interface could be controlled with precise position and high-fidelity force feedback.


1995 ◽  
Vol 34 (05) ◽  
pp. 475-488
Author(s):  
B. Seroussi ◽  
J. F. Boisvieux ◽  
V. Morice

Abstract:The monitoring and treatment of patients in a care unit is a complex task in which even the most experienced clinicians can make errors. A hemato-oncology department in which patients undergo chemotherapy asked for a computerized system able to provide intelligent and continuous support in this task. One issue in building such a system is the definition of a control architecture able to manage, in real time, a treatment plan containing prescriptions and protocols in which temporal constraints are expressed in various ways, that is, which supervises the treatment, including controlling the timely execution of prescriptions and suggesting modifications to the plan according to the patient’s evolving condition. The system to solve these issues, called SEPIA, has to manage the dynamic, processes involved in patient care. Its role is to generate, in real time, commands for the patient’s care (execution of tests, administration of drugs) from a plan, and to monitor the patient’s state so that it may propose actions updating the plan. The necessity of an explicit time representation is shown. We propose using a linear time structure towards the past, with precise and absolute dates, open towards the future, and with imprecise and relative dates. Temporal relative scales are introduced to facilitate knowledge representation and access.


1999 ◽  
Vol 7 (4) ◽  
pp. 391-404 ◽  
Author(s):  
TONG FANG ◽  
MOHSEN A. JAFARI ◽  
AHMAD SAFARI ◽  
STEPHEN C. DANFORTH

Author(s):  
Shunfeng Yang ◽  
Haiyu Chen ◽  
Pengfei Sun ◽  
Haiyu Wang ◽  
Frede GE Blaabjerg ◽  
...  

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Alejandro GutierreznGiles ◽  
Luis U. EvangelistanHernandez ◽  
Marco A. Arteaga ◽  
Carlos A. CruznVillar ◽  
Alejandro RodrigueznAngeles

Sign in / Sign up

Export Citation Format

Share Document