scholarly journals Progesterone and Overlooked Endocrine Pathways in Breast Cancer Pathogenesis

Endocrinology ◽  
2015 ◽  
Vol 156 (10) ◽  
pp. 3442-3450 ◽  
Author(s):  
Cathrin Brisken ◽  
Kathryn Hess ◽  
Rachel Jeitziner

Worldwide, breast cancer incidence has been increasing for decades. Exposure to reproductive hormones, as occurs with recurrent menstrual cycles, affects breast cancer risk, and can promote disease progression. Exogenous hormones and endocrine disruptors have also been implicated in increasing breast cancer incidence. Numerous in vitro studies with hormone-receptor-positive cell lines have provided insights into the complexities of hormone receptor signaling at the molecular level; in vivo additional layers of complexity add on to this. The combined use of mouse genetics and tissue recombination techniques has made it possible to disentangle hormone action in vivo and revealed that estrogens, progesterone, and prolactin orchestrate distinct developmental stages of mammary gland development. The 2 ovarian steroids that fluctuate during menstrual cycles act on a subset of mammary epithelial cells, the hormone-receptor-positive sensor cells, which translate and amplify the incoming systemic signals into local, paracrine stimuli. Progesterone has emerged as a major regulator of cell proliferation and stem cell activation in the adult mammary gland. Two progesterone receptor targets, receptor activator of NfκB ligand and Wnt4, serve as downstream paracrine mediators of progesterone receptor-induced cell proliferation and stem cell activation, respectively. Some of the findings in the mouse have been validated in human ex vivo models and by next-generation whole-transcriptome sequencing on healthy donors staged for their menstrual cycles. The implications of these insights into the basic control mechanisms of mammary gland development for breast carcinogenesis and the possible role of endocrine disruptors, in particular bisphenol A in this context, will be discussed below.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Parisa Rabieifar ◽  
Ting Zhuang ◽  
Tânia D. F. Costa ◽  
Miao Zhao ◽  
Staffan Strömblad

Abstract p21-activated kinases (PAKs) are serine/threonine kinases functioning as downstream effectors of the small GTPases Rac1 and Cdc42. Members of the PAK family are overexpressed in human breast cancer, but their role in mammary gland development is not fully explored. Here we examined the functional role of PAK4 in mammary gland development by creating a mouse model of MMTV-Cre driven conditional PAK4 gene depletion in the mammary gland. The PAK4 conditional knock-out mice were born healthy, with no observed developmental deficits. Mammary gland whole-mounts revealed no defects in ductal formation or elongation of the mammary tree through the fat pad. PAK4 gene depletion also did not alter proliferation and invasion of the mammary epithelium in young virgin mice. Moreover, adult mice gave birth to healthy pups with normal body weight upon weaning. This implies that MMTV-Cre induced gene depletion of PAK4 in mice does not impair normal mammary gland development and thereby provides an in vivo model that can be explored for examination of the potential function of PAK4 in breast cancer.


2019 ◽  
Author(s):  
Parisa Rabieifar ◽  
Ting Zhuang ◽  
Tânia D. F. Costa ◽  
Miao Zhao ◽  
Staffan Strömblad

Abstractp21-activated protein kinases (PAKs) are serine/threonine kinases functioning as downstream effectors of the small GTPases Rac1 and Cdc42. Members of the PAK family are overexpressed in human breast cancer, but their role in mammary gland development is not fully explored. Here we examined the functional role of PAK4 in mammary gland development by creating a mouse model of MMTV-Cre driven conditional PAK4 gene depletion in the mammary gland. The PAK4 conditional knock-out mice were born healthy with no observed developmental deficits. Mammary gland whole-mounts revealed no defects in ductal formation or elongation of the mammary tree through the fat pad. PAK4 gene depletion also did not alter proliferation and invasion of the mammary epithelium in young virgin mice. Moreover, adult mice gave birth to healthy pups with normal body weight upon weaning. This implies that MMTV-Cre induced gene depletion of PAK4 in mice does not impair normal mammary gland development and thereby provides an in vivo model for examination of the potential function of PAK4 in breast cancer.


Endocrinology ◽  
2005 ◽  
Vol 146 (8) ◽  
pp. 3577-3588 ◽  
Author(s):  
Mark D. Aupperlee ◽  
Kyle T. Smith ◽  
Anastasia Kariagina ◽  
Sandra Z. Haslam

Abstract Progesterone is a potent mitogen in the mammary gland. Based on studies using cells and animals engineered to express progesterone receptor (PR) isoforms A or B, PRA and PRB are believed to have different functions. Using an immunohistochemical approach with antibodies specific for PRA only or PRB only, we show that PRA and PRB expression in mammary epithelial cells is temporally and spatially separated during normal mammary gland development in the BALB/c mouse. In the virgin mammary gland when ductal development is active, the only PR protein isoform expressed was PRA. PRA levels were significantly lower during pregnancy, suggesting a minor role at this stage of development. PRB was abundantly expressed only during pregnancy, during alveologenesis. PRA and PRB colocalization occurred in only a small percentage of cells. During pregnancy there was extensive colocalization of PRB with 5-bromo-2′-deoxyuridine (BrdU) and cyclin D1; 95% of BrdU-positive cells and 83% of cyclin D1-positive cells expressed PRB. No colocalization of PRA with either BrdU or cyclin D1 was observed at pregnancy. In the virgin gland, PRA colocalization with BrdU or cyclin D1 was low; only 27% of BrdU-positive cells and 4% of cyclin D1-positive cells expressed PRA. The implication of these findings is that different actions of progesterone are mediated in PRB positive vs. PRA-positive cells in vivo. The spatial and temporal separation of PR isoform expression in mouse mammary gland provides a unique opportunity to determine the specific functions of PRA vs. PRB in vivo.


2000 ◽  
pp. 257-269 ◽  
Author(s):  
R Kumar ◽  
R K Vadlamudi ◽  
L Adam

Homeostasis in normal tissue is regulated by a balance between proliferative activity and cell loss by apoptosis. Apoptosis is a physiological mechanism of cell loss that depends on both pre-existing proteins and de novo protein synthesis, and the process of apoptosis is integral to normal mammary gland development and in many diseases, including breast cancer. The mammary gland is one of the few organ systems in mammals that completes its morphologic development postnatally during two discrete physiologic states, puberty and pregnancy. The susceptibility of the mammary gland to tumorigenesis is influenced by its normal development, particularly during stages of puberty and pregnancy that are characterized by marked alterations in breast cell proliferation and differentiation. Numerous epidemiologic studies have suggested that specific details in the development of the mammary gland play a critical role in breast cancer risk. Mammary gland development is characterized by dynamic changes in the expression profiles of Bcl-2 family members. The expression of Bcl-2 family proteins in breast cancer is also influenced by estradiol and by progestin. Since the ratio of proapoptotic to antiapoptotic proteins determines apoptosis or cell survival, hormone levels may have important implications in the therapeutic prevention of breast cancer.


Sign in / Sign up

Export Citation Format

Share Document