Evaluation of Particle Counter Technology for Detection of Fuel Contamination Detection Utilizing Advanced Aviation Forward Area Refueling System

2014 ◽  
Author(s):  
Joel Schmitigal
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dirk Mürbe ◽  
Martin Kriegel ◽  
Julia Lange ◽  
Hansjörg Rotheudt ◽  
Mario Fleischer

AbstractIn this study, emission rates of aerosols emitted by professional singers were measured with a laser particle counter under cleanroom conditions. The emission rates during singing varied between 753 and 6093 particles/sec with a median of 1537 particles/sec. Emission rates for singing were compared with data for breathing and speaking. Significantly higher emission rates were found for singing. The emission enhancements between singing and speaking were between 4.0 and 99.5 with a median of 17.4, largely due to higher sound pressure levels when singing. Further, significant effects of vocal loudness were found, whereas there were no significant differences between the investigated voice classifications. The present study supports the efforts to improve the risk management in cases of possible aerogenic virus transmission, especially for choir singing.


1946 ◽  
Vol 15 (1) ◽  
pp. 44-63 ◽  
Author(s):  
Reeve H. Betts ◽  
William M. Lees

Author(s):  
S. Bezantakos ◽  
M. Costi ◽  
K. Barmpounis ◽  
P. Antoniou ◽  
P. Vouterakos ◽  
...  

Author(s):  
Laurentiu Predescu ◽  
Daniel Dunea

Optical monitors have proven their versatility into the studies of air quality in the workplace and indoor environments. The current study aimed to perform a screening of the indoor environment regarding the presence of various fractions of particulate matter (PM) and the specific thermal microclimate in a classroom occupied with students in March 2019 (before COVID-19 pandemic) and in March 2021 (during pandemic) at Valahia University Campus, Targoviste, Romania. The objectives were to assess the potential exposure of students and academic personnel to PM and to observe the performances of various sensors and monitors (particle counter, PM monitors, and indoor microclimate sensors). PM1 ranged between 29 and 41 μg m−3 and PM10 ranged between 30 and 42 μg m−3. It was observed that the particles belonged mostly to fine and submicrometric fractions in acceptable thermal environments according to the PPD and PMV indices. The particle counter recorded preponderantly 0.3, 0.5, and 1.0 micron categories. The average acute dose rate was estimated as 6.58 × 10−4 mg/kg-day (CV = 14.3%) for the 20–40 years range. Wearing masks may influence the indoor microclimate and PM levels but additional experiments should be performed at a finer scale.


2021 ◽  
Vol 93 (15) ◽  
pp. 6178-6187
Author(s):  
Zhilong Wang ◽  
Jiawei Liu ◽  
Yanlian Yang ◽  
Ping Li ◽  
Kaikai Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document