scholarly journals Aspects of heavy, dense lattice QCD : series expansion methods, baryon versus isospin density and large Nc

2021 ◽  
Author(s):  
◽  
Jonas Benedict Scheunert

For finite baryon chemical potential, conventional lattice descriptions of quantum chromodynamics (QCD) have a sign problem which prevents straightforward simulations based on importance sampling. In this thesis we investigate heavy dense QCD by representing lattice QCD with Wilson fermions at finite temperature and density in terms of Polyakov loops. We discuss the derivation of $3$-dimensional effective Polyakov loop theories from lattice QCD based on a combined strong coupling and hopping parameter expansion, which is valid for heavy quarks. The finite density sign problem is milder in these theories and they are also amenable to analytic evaluations. The analytic evaluation of Polyakov loop theories via series expansion techniques is illustrated by using them to evaluate the $\SU{3}$ spin model. We compute the free energy density to $14$th order in the nearest neighbor coupling and find that predictions for the equation of state agree with simulations to $\mathcal{O}(1\%)$ in the phase were the (approximate) $Z(3)$ center symmetry is intact. The critical end point is also determined but with less accuracy and our results agree with numerical results to $\mathcal{O}(10\%)$. While the accuracy for the endpoint is limited for the current length of the series, analytic tools provide valuable insight and are more flexible. Furthermore they can be generalized to Polyakov-loop-theories with $n$-point interactions. We also take a detailed look at the hopping expansion for the derivation of the effective theory. The exponentiation of the action is discussed by using a polymer expansion and we also explain how to obtain logarithmic resummations for all contributions, which will be achieved by employing the finite cluster method know from condensed matter physics. The finite cluster method can also be used to evaluate the effective theory and comparisons of the evaluation of the effective action and a direction evaluation of the partition function are made. We observe that terms in the evaluation of the effective theory correspond to partial contractions in the application of Wick's theorem for the evaluation of Grassmann-valued integrals. Potential problems arising from this fact are explored. Next to next to leading order results from the hopping expansion are used to analyze and compare the onset transition both for baryon and isospin chemical potential. Lattice QCD with an isospin chemical potential does not have a sign problem and can serve as a valuable cross-check. Since we are restricted by the relatively short length of our series, we content ourselves with observing some qualitative phenomenological properties arising in the effective theory which are relevant for the onset transition. Finally, we generalize our results to arbitrary number of colors $N_c$. We investigate the transition from a hadron gas to baryon condensation and find that for any finite lattice spacing the transition becomes stronger when $N_c$ is increased and to be first order in the limit of infinite $N_c$. Beyond the onset, the pressure is shown to scale as $p \sim N_c$ through all available orders in the hopping expansion, which is characteristic for a phase termed quarkyonic matter in the literature. Some care has to be taken when approaching the continuum, as we find that the continuum limit has to be taken before the large $N_c$ limit. Although we currently are unable to take the limits in this order, our results are stable in the controlled range of lattice spacings when the limits are approached in this order.

2007 ◽  
Vol 22 (07n10) ◽  
pp. 457-471 ◽  
Author(s):  
M. P. LOMBARDO

A general introduction into the subject aimed at a general theoretical physics audience. We introduce the sign problem posed by finite density lattice QCD, and we discuss the main methods proposed to circumvent it, with emphasis on the imaginary chemical potential approach. The interrelation between Taylor expansion and analytic continuation from imaginary chemical potential is discussed in detail. The main applications to the calculation of the critical line, and to the thermodynamics of the hot and normal phase are reviewed.


2018 ◽  
Vol 175 ◽  
pp. 05003 ◽  
Author(s):  
Michael Wagman

Lattice QCD simulations of multi-baryon correlation functions can predict the structure and reactions of nuclei without encountering the baryon chemical potential sign problem. However, they suffer from a signal-to-noise problem where Monte Carlo estimates of observables have quantum fluctuations that are exponentially larger than their average values. Recent lattice QCD results demonstrate that the complex phase of baryon correlations functions relates the baryon signal-to-noise problem to a sign problem and exhibits unexpected statistical behavior resembling a heavy-tailed random walk on the unit circle. Estimators based on differences of correlation function phases evaluated at different Euclidean times are discussed that avoid the usual signal-to-noise problem, instead facing a signal-to-noise problem as the time interval associated with the phase difference is increased, and allow hadronic observables to be determined from arbitrarily large-time correlation functions.


2018 ◽  
Vol 175 ◽  
pp. 12003
Author(s):  
Takahiro M. Doi ◽  
Kouji Kashiwa

The quark number density at finite imaginary chemical potential is investigated in the lattice QCD using the Dirac-mode expansion. We find the analytical formula of the quark number density in terms of the Polyakov loop in the large quark mass regime. On the other hand, in the small quark mass region, the quark number density is investigated by using the quenched lattice QCD simulation. The quark number density is found to strongly depend on the low-lying Dirac modes while its sign does not change. This result leads to that the quark number holonomy is not sensitive to the low-lying Dirac modes. We discuss the confinement-deconfinement transition from the property of the quark number density and the quark number holonomy.


2009 ◽  
Vol 682 (2) ◽  
pp. 240-245 ◽  
Author(s):  
Julia Danzer ◽  
Christof Gattringer ◽  
Ludovit Liptak ◽  
Marina Marinkovic

Open Physics ◽  
2012 ◽  
Vol 10 (6) ◽  
Author(s):  
Tomáš Brauner

AbstractWe revisit the center-symmetric dimensionally reduced effective theory for two-color Yang-Mills theory at high temperature. This effective theory includes an order parameter for deconfinement and thus allows to broaden the range of validity of the conventional three-dimensional effective theory (EQCD) towards the confining phase transition. We extend the previous results by including the effects of massive quarks with nonzero baryon chemical potential. The parameter space of the theory is constrained by leading-order matching to the Polyakov loop effective potential of two-color QCD. Once all the parameters are fixed, the effective theory can provide model-independent predictions for the physics above the deconfinement transition, thus bridging the gap between large-scale numerical simulations and semi-analytical calculations within phenomenological models.


Author(s):  
Laurin Pannullo ◽  
Marc Wagner ◽  
Marc Winstel

We study the μ-μ45-T phase diagram of the 2+1-dimensional Gross-Neveu model, where μ denotes the ordinary chemical potential, μ45 the chiral chemical potential and T the temperature. We use the mean-field approximation and two different lattice regularizations with naive chiral fermions. An inhomogeneous phase at finite lattice spacing is found for one of the two regularizations. Our results suggest that there is no inhomogeneous phase in the continuum limit. We show that a chiral chemical potential is equivalent to an isospin chemical potential. Thus, all results presented in this work can also be interpreted in the context of isospin imbalance.


2018 ◽  
Vol 175 ◽  
pp. 07039 ◽  
Author(s):  
Felipe Attanasio ◽  
Benjamin Jäger

The sign problem appears in lattice QCD as soon as a non-zero chemical potential is introduced. This prevents direct simulations to determine the phase structure of the strongly interacting matter. Complex Langevin methods have been successfully used for various models or approximations of QCD. However, in some scenarios it converges to incorrect results. We present developments of our new method that helps to improve the convergence by keeping the system closer to the SU(3) manifold and discuss preliminary tests and results.


2020 ◽  
Vol 28 (2) ◽  
pp. 39-50
Author(s):  
O. Borisenko ◽  
V. Chelnokov ◽  
S. Voloshyn

The eigenvalues of the Polyakov loop are calculated in the strong coupled lattice QCD at finite tempera­ture. This is done both in the pure gauge theory and in the theory with heavy quarks at finite baryon chemical potential. Computations are performed in the mean­field like approach to the effective action. Using the eigenvalues obtained we also evaluate the free energy, real and imaginary parts of the Polyakov loops and the baryon density. The phase diagram of the model and influence of the baryon chemical potential are discussed in details. We underline a similarity between our calculations and continuum derivations of the phenomenon of A0 condensation.


Pramana ◽  
2004 ◽  
Vol 63 (6) ◽  
pp. 1211-1224 ◽  
Author(s):  
Sourendu Gupta

2018 ◽  
Vol 175 ◽  
pp. 07009 ◽  
Author(s):  
V. G. Bornyakov ◽  
V. V. Braguta ◽  
E.-M. Ilgenfritz ◽  
A. Yu. Kotov ◽  
I. E. Kudrov ◽  
...  

In this report we study the properties of the dense SU(2) QCD. The lattice simulations are carried out with improved gauge action and smaller lattice spacing as compared to our previous work. This allowed us to approach closer to the continuum limit and reach larger densities without lattice artifacts. We measured string tension and Polyakov loop as functions of chemical potential and temperature. At suffciently large baryon density and zero temperature we observe confinement/deconfinement transition which manifests itself as a vanishing of the string tension and rising of the Polyakov loop.


Sign in / Sign up

Export Citation Format

Share Document