scholarly journals Plant Population, Transplant Size, and Variety Effect on Transplanted Short-day Onion Production

2009 ◽  
Vol 19 (1) ◽  
pp. 145-151 ◽  
Author(s):  
George E. Boyhan ◽  
Reid L. Torrance ◽  
Jeff Cook ◽  
Cliff Riner ◽  
C. Randell Hill

Onions (Allium cepa) produced in southeastern Georgia's Vidalia-growing region are primarily grown from on-farm–produced bareroot transplants, which are usually sown the end of September. These transplants are pulled midwinter (November–January) and are reset to their final spacing. This study was to evaluate transplant size and spacing effects on yield and quality of onions. Large transplants (260–280 g per 20 plants) generally produced the highest yield. Medium transplant size in the range of 130 to 150 g per 20 plants produced satisfactory yield while maintaining low numbers of seedstems (flowering) and doubled bulbs, which are undesirable characteristics. Smaller transplant size (40–60 g per 20 plants) have reduced yields and lower numbers of seedstems and double bulbs. Increasing plant population from 31,680 to 110,880 plants/acre can increase yield. In addition, plant populations of 110,880 plants/acre can increase yields compared with 63,360 plants/acre (industry standard), but only when environmental conditions favor low seedstem numbers. Seedstems can be high because of specific varieties, high plant population, or more importantly, in years with environmental conditions that are conducive to their formation. ‘Sweet Vidalia’ was the only variety that had consistently reduced quality and high numbers of seedstems. ‘Sweet Vidalia’ has a propensity for high seedstem numbers, which may have influenced results with this variety. A complete fertilization program that included 133 or 183 lb/acre nitrogen did not affect onion yield, regardless of variety or population density.

2009 ◽  
Vol 19 (1) ◽  
pp. 66-71 ◽  
Author(s):  
George E. Boyhan ◽  
Reid L. Torrance ◽  
Jeff Cook ◽  
Cliff Riner ◽  
C. Randell Hill

Onions (Allium cepa) produced in southeastern Georgia's Vidalia-growing region are primarily grown from on-farm produced bareroot transplants, which are usually sown at the end of September. These transplants are pulled midwinter (November to January) and reset to their final spacing. This study was to evaluate sowing date, transplanting date, and variety effect on yield and quality of onions. Beginning in the first week of November, onions can be transplanted until the end of December with reasonable yield and quality. For example, in the 2003–04 season, total yield of onions transplanted on 22 Dec. 2003 did not differ from any onions transplanted on earlier dates in November or December. In the 2004–05 season, onions transplanted on 20 Dec. 2004, had lower total yield than onions transplanted in November, but were not different from onions transplanted on 4 Jan. 2005. The propensity of some varieties to form double bulbs can be reduced with later sowing and transplanting dates. Sowing the first week of October rather than the fourth week of September and transplanting in December rather than November can reduce double bulbs in some varieties.


HortScience ◽  
2014 ◽  
Vol 49 (10) ◽  
pp. 1298-1304 ◽  
Author(s):  
Elisha Otieno Gogo ◽  
Mwanarusi Saidi ◽  
Jacob Mugwa Ochieng ◽  
Thibaud Martin ◽  
Vance Baird ◽  
...  

French bean [Phaseolus vulgaris (L.)] is among the leading export vegetable in Africa, mostly produced by small-scale farmers. Unfavorable environmental conditions and heavy infestations by insect pests are among the major constraints limiting production of the crop. Most French bean producers grow their crop in open fields outdoors subject to harsh environmental conditions and repeatedly spray insecticides in a bid to realize high yield. This has led to rejection of some of the produce at the export market as a result of stringent limits on maximum residue levels. Two trials were conducted at the Horticulture Research and Teaching Field, Egerton University, Kenya, to evaluate the potential of using agricultural nets (herein referred to as agronets) to improve the microclimate, reduce pest infestation, and increase the yield and quality of French bean. A randomized complete block design with five replications was used. French bean seeds were direct-seeded, sprayed with an alpha-cypermethrin-based insecticide (control), covered with a treated agronet (0.9 mm × 0.7 mm average pore size made of 100 denier yarn knitted into a mesh impregnated with alpha-cypermethrin), or covered with an untreated-agronet (0.9 mm × 0.7 mm average pore size made of 100 denier yarn knitted into a mesh not impregnated with insecticide). Alpha-cypermethrin and agronets were manufactured by Tagros Chemicals (India) and A to Z Textile Mills (Tanzania), respectively. Covering French bean with the agronets modified the microclimate of the growing crop with air temperature increased by ≈10%, relative humidity by 4%, and soil moisture by 20%, whereas photosynthetic active radiation (PAR) and daily light integral (DLI) were decreased by ≈1% and 11.5%, respectively. Populations of silverleaf whitefly [Bemisia tabaci (Gennadius)] and black bean aphids [Aphis fabae (Scopoli)] were reduced under agronet covers as contrasted with control plots. Furthermore, populations of both pests were reduced on French bean grown under impregnated agronets compared with untreated agronets, but only on three of the five sampling dates [30, 44, and 72 days after planting (DAP)] for silver leaf whitefly or at only one of the five sampling dates (30 DAP) for black bean aphid. Covering French bean with agronets advanced seedling emergence by 2 days and increased seedling emergence over 90% compared with control plots. French bean plants covered with both agronet treatments had faster development, better pod yield, and quality compared with the uncovered plants. These findings demonstrate the potential of agronets in improving French bean performance while minimizing the number of insecticide sprays within the crop cycle, which could lead to less rejection of produce in the export market and improved environmental quality.


2018 ◽  
Vol 40 (4) ◽  
Author(s):  
Jéssika Angelotti-Mendonça ◽  
Mara Fernandes Moura ◽  
João Alexio Scarpare Filho ◽  
Bruna Thaís Ferracioli Vedoato ◽  
Marco Antonio Tecchio

Abtract In Brazil, the producers have changed used rootstocks to get more vigor to scion. Rootstocks change the distribution of bud fruitfulness over grapevine shoots and the expression of the bud fruitfulness into fruit yield. Hence, these modification could alter ideal pruning length. In this way, it was evaluated bud fruitfulness, fruit yield and quality of ‘Niagara Rosada’ grapevine grafted onto rootstocks: ‘IAC 766’, ‘IAC 572’, ‘IAC 313’, ‘IAC 571-6’, and ‘Riparia do Traviu’, which ‘IAC 766’ is the most used rootstock in São Paulo State, nowadays. The evaluations were performed over three crop seasons, in a vineyard located in Louveira, SP. Two evaluations were performed in Brazilian traditional season, and one crop pruning was performed in Brazilian summer, called “off-season”. In traditional seasons, the bud fruitfulness was evaluated from the first to fourth bud in 2014 and to the fifth in 2015. In the off-season, bud fruitfulness was evaluated from the fifth to eighth bud. Fruit yield and quality were also evaluated over the three production cycles. Bud fruitfulness of ‘Niagara Rosada’ grafted onto the evaluated rootstocks showed that this characteristic was more affected by the environmental conditions, confirmed due to alteration of bud fruitfulness through production cycles. Additionally, no effect of rootstock was observed on fruit yield, and quality of ‘Niagara Rosada’. Only isolated variations were detected, and these are not enough to confirm the influence of rootstocks on scion of ‘Niagara Rosada’. Although no effect of rootstocks on bud fruitfulness, fruit yield and quality has been observed in the evaluated conditions, all rootstocks are recommended to be used in combination with ‘Niagara Rosada’.


1980 ◽  
Vol 60 (3) ◽  
pp. 923-928 ◽  
Author(s):  
JOHN O’SULLIVAN

The effects of plant spacing and irrigation at two rates of N in 1977 and 1978 and one rate of N in 1979 on yield and quality of pickling cucumbers (Cucumis sativus L.) harvested once-over was investigated. Plant populations significantly affected yield, with highest yields produced at the highest population of 64 plants/m2 each year. Irrigation and N rate had no significant effect on yield. Lack of soil moisture was not a limiting factor on yield during the critical growth stage of early fruit set in any year. Plant population also significantly affected fruit quality. In general, fruit quality decreased as plant population increased. Irrigation affected fruit quality only in 1977 while N rate affected quality in 1977 and 1978. Fruit color was affected by irrigation and N, but not by plant populations. Planting arrangement had no significant effect on yield or quality. Tissue N decreased with increasing population and irrigation in 1977 and indicated an increased demand for N when cucumbers are produced with irrigation at high plant density.


1967 ◽  
Vol 3 (1) ◽  
pp. 41-53 ◽  
Author(s):  
W. M. Tahir ◽  
M. S. Misovic

SummaryAn early upright-bunch variety of groundnut, Barberton, and a medium-late spreading-bunch variety, Ashford, were compared at 7·5, 15·0 and 30·0 cm. intra-row spacings planted at one and two kernels per hill on 60 cm. ridges in the irrigated heavy clay soil of the Sudan Gezira in 1963 and 1964. Barberton was harvested on days 95, 110 and 125, and Ashford on days 125, 140 and 155 after planting in July–August. Ashford outyielded Barberton at the lower densities, and the best pod yields were obtained on day 125 harvest at a population of 55,000–60,000 plants per acre. A higher plant population depressed the yield of Ashford while the increased pod yield of Barberton was not significant. Field germination of kernels increased more in Barberton with delay in harvest and with decrease in plant population than in Ashford. Mean pod and kernel weights and shelling out-turn of Barberton increased with delay in harvest. Barberton gave higher oil content and shelling out-turn, and lower proportion of pods with single kernels than Ashford. The highest population of Barberton gave the best oil content in early harvests. In general, the arrangement of plants within rows at similar populations had only small effects except on the quality of nuts, which was improved by planting single kernels at close spacing (7·5 cm.) with the variety Barberton and two kernels at wide spacing (15·0 cm.) with Ashford, at optimum plant populations.


Sign in / Sign up

Export Citation Format

Share Document