scholarly journals 748 PB 108 THE RELATIONSHIP BETWEEN ROOT HAIR DEVELOPMENT AND OTHER ROOT ATTRIBUTES IN CITRUS AND CITRUS RELATIVES

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 540c-540
Author(s):  
Richard J. Crawford ◽  
David M. Eissenstat

The relationship of genotypic variation in root hair development with root proliferation, mycorrhizal colonization, and specific root length (length / dry mass) was studied in sixteen field-grown citrus relatives. The species varied widely in hair development, root length and mass density, and specific root length. No correlation was found between hair development, mycorrhizal colonization, root proliferation, and specific root length. However, there was a significant correlation (r=.55) between the percentage of total root length with hairs and the percentage of hairs with adhered soil. In a second experiment, the phenotypic plasticity in root hair development was studied in four-citrus rootstooks: Swingle citsumelo, Sour orange, Trifoliate orange and Volkamer lemon. Roots were grow” in either mineral soil or high organic matter media. After eight weeks, root length density and percentage of root length with hairs averaged over all four rootstocks was 232 % and 85 % greater in the organic media than in the mineral soil. Similar to the first experiment the percentage of total root length with hairs was significantly correlated (r=.99) with the percentage of hairs with adhered soil.

Author(s):  
Emma Burak ◽  
John N Quinton ◽  
Ian C Dodd

Abstract Background and Aims Rhizosheaths are defined as the soil adhering to the root system after it is extracted from the ground. Root hairs and mucilage (root exudates) are key root traits involved in rhizosheath formation, but to better understand the mechanisms involved their relative contributions should be distinguished. Methods The ability of three species [barley (Hordeum vulgare), maize (Zea mays) and Lotus japonicus (Gifu)] to form a rhizosheath in a sandy loam soil was compared with that of their root-hairless mutants [bald root barley (brb), maize root hairless 3 (rth3) and root hairless 1 (Ljrhl1)]. Root hair traits (length and density) of wild-type (WT) barley and maize were compared along with exudate adhesiveness of both barley and maize genotypes. Furthermore, root hair traits and exudate adhesiveness from different root types (axile versus lateral) were compared within the cereal species. Key Results Per unit root length, rhizosheath size diminished in the order of barley > L. japonicus > maize in WT plants. Root hairs significantly increased rhizosheath formation of all species (3.9-, 3.2- and 1.8-fold for barley, L. japonicus and maize, respectively) but there was no consistent genotypic effect on exudate adhesiveness in the cereals. While brb exudates were more and rth3 exudates were less adhesive than their respective WTs, maize rth3 bound more soil than barley brb. Although both maize genotypes produced significantly more adhesive exudate than the barley genotypes, root hair development of WT barley was more extensive than that of WT maize. Thus, the greater density of longer root hairs in WT barley bound more soil than WT maize. Root type did not seem to affect rhizosheath formation, unless these types differed in root length. Conclusions When root hairs were present, greater root hair development better facilitated rhizosheath formation than root exudate adhesiveness. However, when root hairs were absent root exudate adhesiveness was a more dominant trait.


2017 ◽  
Vol 29 (2) ◽  
pp. 260-276 ◽  
Author(s):  
Yan Zhu ◽  
Liang Rong ◽  
Qiang Luo ◽  
Baihui Wang ◽  
Nana Zhou ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xi Wang ◽  
Yingli Zhou ◽  
Yanyu Xu ◽  
Baoshan Wang ◽  
Fang Yuan

Abstract Background Identifying genes involved in salt tolerance in the recretohalophyte Limonium bicolor could facilitate the breeding of crops with enhanced salt tolerance. Here we cloned the previously uncharacterized gene LbHLH and explored its role in salt tolerance. Results The 2,067-bp open reading frame of LbHLH encodes a 688-amino-acid protein with a typical helix-loop-helix (HLH) domain. In situ hybridization showed that LbHLH is expressed in salt glands of L. bicolor. LbHLH localizes to the nucleus, and LbHLH is highly expressed during salt gland development and in response to NaCl treatment. To further explore its function, we heterologously expressed LbHLH in Arabidopsis thaliana under the 35S promoter. The overexpression lines showed significantly increased trichome number and reduced root hair number. LbHLH might interact with GLABRA1 to influence trichome and root hair development, as revealed by yeast two-hybrid analysis. The transgenic lines showed higher germination percentages and longer roots than the wild type under NaCl treatment. Analysis of seedlings grown on medium containing sorbitol with the same osmotic pressure as 100 mM NaCl demonstrated that overexpressing LbHLH enhanced osmotic resistance. Conclusion These results indicate that LbHLH enhances salt tolerance by reducing root hair development and enhancing osmotic resistance under NaCl stress.


2011 ◽  
Vol 6 (9) ◽  
pp. 1414-1417 ◽  
Author(s):  
Yao Fang Niu ◽  
Gu Lei Jin ◽  
Ru Shan Chai ◽  
Huan Wang ◽  
Yong Song Zhang

Sign in / Sign up

Export Citation Format

Share Document