scholarly journals An Ethylene-inducible Lipoxygenase Gene from Potato Leaves

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 453B-453
Author(s):  
Mikhailo V. Kolomiets ◽  
Richard J. Gladon ◽  
David J. Hannapel

Due to apparent participation of plant lipoxygenases (LOXs) in the biosynthetic pathways for jasmonic acid, methyl jasmonate, traumatin, and several C-6 volatile compounds, LOXs are believed to have a role in senescence, plant growth and development, and wound- and pathogen-induced defense responses. Multiple functions that are ascribed to this enzyme family are in accordance with the heterogeneity of LOX isozyme forms. It is possible that different LOX isoforms may be involved in different physiological processes. In our search for a gene that encodes a LOX isozyme form specifically involved in potato defense responses against pests and pathogens, we have screened an abscisic acid-induced potato leaf cDNA library, and we have isolated, sequenced, and characterized a cDNA clone that we have designated POTLX-3. The high sequence homology of our cDNA clone to other reported plant LOX genes provided evidence that POTLX-3 is a lipoxygenase. This cDNA clone represents a novel potato LOX gene in that it shares the least nucleotide and amino acid sequence homology to other isolated potato LOX genes. Northern analysis indicated that POTLX-3 transcripts did not accumulate in untreated potato leaves, but it was highly induced by treatment with physiological levels of ethylene. Northern analysis also was performed to study whether the POTLX-3 mRNA accumulation could be induced by other plant hormones that affect expression of the other plant LOX and defense-related genes. Treatment of potato leaves with methyl jasmonate, abscisic acid, gibberellic acid, auxin (NAA), and cytokinin (BA) did not induce POTLX-3 gene expression. Because the pattern of POTLX-3 gene expression is similar to that of pathogenesis-related (PR) proteins, especially the PR-1 and PR-5 groups, we suspect that POTLX-3 may be involved specifically in ethylene-induced defense responses against pathogens.

2013 ◽  
Vol 164 ◽  
pp. 484-491 ◽  
Author(s):  
Dequan Sun ◽  
Xinhua Lu ◽  
Yulin Hu ◽  
Weiming Li ◽  
Keqian Hong ◽  
...  

2020 ◽  
Vol 21 (5) ◽  
pp. 1722 ◽  
Author(s):  
Fan-Chen Huang ◽  
Hau-Hsuan Hwang

Agrobacterium tumefaciens uses the type IV secretion system, which consists of VirB1-B11 and VirD4 proteins, to deliver effectors into plant cells. The effectors manipulate plant proteins to assist in T-DNA transfer, integration, and expression in plant cells. The Arabidopsis reticulon-like (RTNLB) proteins are located in the endoplasmic reticulum and are involved in endomembrane trafficking in plant cells. The rtnlb4 mutants were recalcitrant to A. tumefaciens infection, but overexpression of RTNLB4 in transgenic plants resulted in hypersusceptibility to A. tumefaciens transformation, which suggests the involvement of RTNLB4 in A. tumefaciens infection. The expression of defense-related genes, including FRK1, PR1, WRKY22, and WRKY29, were less induced in RTNLB4 overexpression (O/E) transgenic plants after A. tumefaciens elf18 peptide treatment. Pretreatment with elf18 peptide decreased Agrobacterium-mediated transient expression efficiency more in wild-type seedlings than RTNLB4 O/E transgenic plants, which suggests that the induced defense responses in RTNLB4 O/E transgenic plants might be affected after bacterial elicitor treatments. Similarly, A. tumefaciens VirB2 peptide pretreatment reduced transient T-DNA expression in wild-type seedlings to a greater extent than in RTNLB4 O/E transgenic seedlings. Furthermore, the VirB2 peptides induced FRK1, WRKY22, and WRKY29 gene expression in wild-type seedlings but not efr-1 and bak1 mutants. The induced defense-related gene expression was lower in RTNLB4 O/E transgenic plants than wild-type seedlings after VirB2 peptide treatment. These data suggest that RTNLB4 may participate in elf18 and VirB2 peptide-induced defense responses and may therefore affect the A. tumefaciens infection process.


PROTEOMICS ◽  
2014 ◽  
Vol 14 (9) ◽  
pp. 1088-1101 ◽  
Author(s):  
Yunfeng Li ◽  
Yanfang Nie ◽  
Zhihui Zhang ◽  
Zhijian Ye ◽  
Xiaotao Zou ◽  
...  

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Rafael Fonseca Benevenuto ◽  
Tarald Seldal ◽  
Stein Joar Hegland ◽  
Cesar Rodriguez-Saona ◽  
Joseph Kawash ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
P. Lakshmi Soujanya ◽  
J. C. Sekhar ◽  
C. V. Ratnavathi ◽  
Chikkappa G. Karjagi ◽  
E. Shobha ◽  
...  

AbstractPink stem borer (PSB) causes considerable yield losses to maize. Plant–insect interactions have significant implications for sustainable pest management. The present study demonstrated that PSB feeding, mechanical wounding, a combination of mechanical wounding and PSB regurgitation and exogenous application of methyl jasmonate have induced phenolic compound mediated defense responses both at short term (within 2 days of treatment) and long term (in 15 days of treatment) in leaf and stalk tissues of maize. The quantification of two major defense related phenolic compounds namely p-Coumaric acid (p-CA) and ferulic acid (FA) was carried out through ultra-fast liquid chromatography (UFLC) at 2 and 15 days after imposing the above treatments. The p-CA content induced in leaf tissues of maize genotypes were intrinsically higher when challenged by PSB attack at V3 and V6 stages in short- and long-term responses. Higher p-CA content was observed in stalk tissues upon wounding and regurgitation in short- and long-term responses at V3 and V6 stages. Significant accumulation of FA content was also observed in leaf tissues in response to PSB feeding at V3 stage in long-term response while at V6 stage it was observed both in short- and long-term responses. In stalk tissues, methyl jasmonate induced higher FA content in short-term response at V3 stage. However, at V6 stage PSB feeding induced FA accumulation in the short-term while, wounding and regurgitation treatment-induced defense responses in the long-term. In general, the resistant (DMRE 63, CM 500) and moderately resistant genotypes (WNZ ExoticPool) accumulated significantly higher contents of p-CA and FA content than susceptible ones (CM 202, BML 6) in most of the cases. The study indicates that phenolic mediated defense responses in maize are induced by PSB attack followed by wounding and regurgitation compared to the other induced treatments. Furthermore, the study confirmed that induced defense responses vary with plant genotype, stage of crop growth, plant tissue and short and long-term responses. The results of the study suggested that the Phenolic acids i.e. p-CA and FA may contribute to maize resistance mechanisms in the maize-PSB interaction system.


2004 ◽  
Vol 85 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Magali Merkx-Jacques ◽  
Jacqueline C. Bede

Abstract Plants exhibit remarkable plasticity in their ability to differentiate between herbivorous insect species and subtly adjust their defense responses to target distinct pests. One key mechanism used by plants to recognize herbivorous caterpillars is elicitors present in their oral secretions; however, these elicitors not only cause the induction of plant defenses but recent evidence suggests that they may also suppress plant responses. The absence of “expected changes” in induced defense responses of insect-infested plants has been attributed to hydrogen peroxide produced by caterpillar salivary glucose oxidase (GOX). Activity of this enzyme is variable among caterpillar species; it was detected in two generalist caterpillars, the beet armyworm (Spodoptera exigua) and the bertha armyworm (Mamestra configurata), but not in other generalist or specialist caterpillar species tested. In the beet armyworm, GOX activity fluctuated over larval development with high activity associated with the salivary glands of fourth instars. Larval salivary GOX activity of the beet armyworm and the bertha armyworm was observed to be significantly higher in caterpillars reared on artificial diet as compared with those reared on Medicago truncatula plants. This implies that a factor in the diet is involved in the regulation of caterpillar salivary enzyme activity. Therefore, plant diet may be regulating caterpillar oral elicitors that are involved in the regulation of plant defense responses: our goal is to understand these two processes.


Sign in / Sign up

Export Citation Format

Share Document