scholarly journals Increase of Easter Lily Postharvest Flower Longevity with PBA Application to Young Flower Buds

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 459A-459 ◽  
Author(s):  
H. Brent Pemberton ◽  
Yin-Tung Wang ◽  
Garry V. McDonald

Case-cooled bulbs of Lilium longiflorum `Nellie White' were potted on 4 Dec. 1995 and forced to flowering using standard growing procedures. Plants were illuminated from shoot emergence to visible bud with supplemental high-intensity-discharge sodium vapor light at 70 μmol·m–2·s–1 from 1700 to 2200 HR each day. When the first primary flower bud (first initiated flower bud most proximal on the shoot) was 5 to 7 cm long, each plant was treated with 3 ml of either de-ionized water or 500 mg·liter–1 6-(benzylamino)-9-(2-tetrahydropyranyl)-9H-purine (PBA). Sprays were directed at the flower buds and associated bracts. When the tepals on the first primary flower bud split, plants were placed at 2°C in the dark for 0, 4, or 21 days. After storage, plants were placed in a postharvest evaluation room with constant 21°C temperature and 18 μmol·m–2·s–1 cool-white fluorescent light. The first three primary flowers on PBA-treated plants lasted significantly longer than corresponding flowers on control plants, but there was no difference between flowers at the fourth and fifth positions. Also, the total postharvest life of the five primary flowers on PBA treated plants was 3 days longer than those on control plants. Storage time inversely affected the postharvest longevity of the first three primary flowers, but had no effect on the longevity of the fourth or fifth primary flowers or total postharvest life of the five primary flowers. There were no significant interaction effects between PBA treatment and storage duration on primary flower longevity.

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 405E-405
Author(s):  
H. Brent Pemberton ◽  
Yin-Tung Wang ◽  
Garry V. McDonald ◽  
Anil P. Ranwala ◽  
William B. Miller

Case-cooled bulbs of Lilium longiflorum `Nellie White' were forced to flowering. When the tepals on the first primary flower bud split, plants were placed at 2 °C in the dark for 0, 4, or 21 days. After storage, plants were placed in a postharvest evaluation room with constant 21 °C and 18 μmol·m-2·-1 cool-white fluorescent light. Lower leaves, upper leaves, and tepals of the first primary flower from a concurrent set of plants were harvested for carbohydrate analysis using HPLC. Storage time did not affect carbohydrate levels in the lower leaf or tepal samples, but sucrose and starch levels decreased while glucose and fructose levels increased in the upper leaf tissue with increasing storage time. These changes were correlated with a decrease in postharvest longevity for the first four primary flowers. Longevity of the fifth primary flower and total postharvest life of the five primary flowers was unaffected by storage.


1991 ◽  
Vol 116 (1) ◽  
pp. 63-67 ◽  
Author(s):  
Timothy A. Prince ◽  
Maria S. Cunningham

Exposure of bulbs of Easter Lily (Lilium longiflorum Thunb.) to a maximum of 2 μl ethylene/liter during vernalization delayed flowering by 5 to 7 days and decreased the number of flower buds. Ethylene exposure for 5 days at 21C after vernalization accelerated shoot emergence and flowering by up to 3 days. No floral or plant abnormalities were observed after bulb exposure to ethylene. Exposure to atmospheres with 0%, 0.5%, or 1% O2 at 21C for up to 2 weeks before or 10 days after vernalization did not “significantly impair subsequent bulb forcing. Storage in 1% 02 at 21C for 1 week before vernalization resulted in nearly one additional secondary bud initiated per plant. Exposure to up to 15% CO2 at 21C for up to 2 weeks before or 10 days after vernalization did not significantly impair subsequent forcing.


1990 ◽  
Vol 115 (6) ◽  
pp. 930-933 ◽  
Author(s):  
Wendy S. Higgins ◽  
Dennis P. Stimart

Lilium longiflorum Thunb. `Ace' bulblets generated in vitro at 25 or 30C were stored at 4C for O, 1, 2, 4, or 6 weeks after removal from culture and before planting to ascertain the effects of in vitro generation temperature and post-in vitro cold storage duration on bulblet growth responses during 36 weeks of greenhouse growth. Increasing post-in vitro storage duration decreased the number of days to first leaf emergence and percentage of plants producing shoots within 36 weeks, but increased the number of days to shoot emergence and anthesis, leaf number, and flower bud number. The length of time required for bulblet development from planting to shoot emergence was affected by storage duration more than periods from shoot emergence to visible bud and anthesis. It is feasible to produce high-quality L. longiflorum pot plants from in vitro-produced bulblets.


HortScience ◽  
1998 ◽  
Vol 33 (6) ◽  
pp. 1028-1029 ◽  
Author(s):  
V.R. Kambalapally ◽  
Nihal C. Rajapakse

The role of light quality on growth, flowering, and postharvest characteristics of `Nellie White' Easter lilies (Lilium longiflorum Thunb.) was evaluated in two growing seasons using 4% CuSO4 and water (control) as spectral filters. The CuSO4 filter significantly reduced plant height and internode length. However, the height reduction was smaller in the 1994—95 season (9%) than in the 1995—96 growing season (32%). The number of days to flower bud appearance and flower opening, and the number and diameter of flowers were not significantly affected by the spectral filters in either season. The CuSO4 filters reduced flower longevity by 3 days in nonstored plants, and by 5 days when plants were subjected to 1 week storage at 4 °C prior to placing in the postharvest room. Results suggest that spectral filters are effective in controlling height and producing compact Easter lily plants without causing a delay in flowering or reducing number of flowers per plant but flower longevity can be adversely affected.


HortScience ◽  
1996 ◽  
Vol 31 (6) ◽  
pp. 976-977
Author(s):  
Yin-Tung Wang

Lilium longiflorum Thunb. `Nellie White' plants were selected when their first flower buds reached 2 or 5 cm in length, sprayed with 2 mL of PBA at 0 or 500 mg·L–1, and then placed under 1440 or 60 μmol·m–2·s–1 photosynthetic photon flux (PPF) during flowering. PBA resulted in delayed anthesis and increased dry matter accumulation in flowers under the high PPF but had no effect under the low PPF. PBA did not decrease the severity of flower bud abortion under the low PPF. Application of PBA induced the formation of numerous bulbils in the leaf axils. Regardless of PPF, PBA-treated plants had less dry weight in the main bulbs than the control plants. Chemical name used: N-(phenylmethyl)-9-(tetra-hydro-2H-pyran-2-yl)-9H-purin-6-amine (PBA).


1999 ◽  
Vol 9 (1) ◽  
pp. 134a
Author(s):  
V.R. Kambalapally ◽  
Nihal C. Rajapakse

The role of light quality on growth, flowering, and postharvest characteristics of `Nellie White' Easter lilies (Lilium longiflorum Thunb.) was evaluated in two growing seasons using 4% CuSO4 and water (control) as spectral filters. The CuSO4 filter significantly reduced plant height and internode length. However, the height reduction was smaller in the 1994-95 season (9%) than in the 1995-96 growing season (32%). The number of days to flower bud appearance and flower opening, and the number and diameter of flowers were not significantly affected by the spectral filters in either season. The CuSO4 filters reduced flower longevity by 3 days in nonstored plants, and by 5 days when plants were subjected to 1 week storage at 4 °C prior to placing in the postharvest room. Results suggest that spectral filters are effective in controlling height and producing compact Easter lily plants without causing a delay in flowering or reducing number of flowers per plant but flower longevity can be adversely affected.


HortScience ◽  
1999 ◽  
Vol 34 (5) ◽  
pp. 902-903 ◽  
Author(s):  
Anil P. Ranwala ◽  
William B. Miller

The effects of Promalin® [PROM; 100 mg·L–1 each of GA4+7 and benzyladenine (BA)] sprays on leaf chlorosis and plant height during greenhouse production of ancymidol-treated (two 0.5-mg drenches per plant) Easter lilies (Lilium longiflorum Thunb. `Nellie White') were investigated. Spraying with PROM at early stages of growth [36 or 55 days after planting (DAP)] completely prevented leaf chlorosis until the puffy bud stage, and plants developed less severe postharvest leaf chlorosis after cold storage at 4 °C for 2 weeks. When PROM was sprayed on plants in which leaf chlorosis had already begun (80 DAP), further leaf chlorosis was prevented during the remaining greenhouse phase and during the postharvest phase. PROM caused significant stem elongation (23% to 52% taller than controls) when applied 36 or 55 DAP, but not when applied at 80 DAP or later. The development of flower buds was not affected by PROM treatments. Although PROM sprays applied at 55 DAP or later increased postharvest flower longevity, earlier applications did not. Chemical names used: N-(phenylmethyl)-1H-purine 6-amine (benzyladenine, BA); α-cyclopropyl-α-(p-methoxyphenyl)-5-pyrimidinemethanol (ancymidol).


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1063b-1063
Author(s):  
Della Carbonaro ◽  
William B. Miller

Success in the production of seasonal flowering plants requires adequate knowledge of plant growth patterns and rates. In Easter lilies, pedicel growth is one the components of final plant height. Flower bud growth rates are important from the standpoint of timing of anthesis. To learn more about the localization of growth in Easter lily flower buds and pedicels, we conducted a time course experiment. Buds and pedicels were marked at 1.2 mm intervals using an inked bolt. Distances between ink marks were determined at 3 day intervals. Results indicate that 30 mm flower buds elongate almost exclusively from basal regions of the bud. The basal 1.2 mm segment elongated 16 mm in 20 days, while the apical 1.2 mm segment elongated 0.75 mm in the same period. Larger buds (initially 90 mm) gave similar results, although bud tip growth rate increased to some degree just prior to flowering. Pedicel elongation occurred almost exclusively at the apical end of the pedicel, adjacent to the region of greatest bud growth.


HortScience ◽  
1992 ◽  
Vol 27 (7) ◽  
pp. 824-826 ◽  
Author(s):  
Yin-Tung Wang ◽  
Lori L. Gregg

Lilium longiflorum Thunb. `Nellie White' plants grown under 1300 μmol·m-2·s-1 maximum photosynthetic photon flux (PPF) in a greenhouse deliberately were completely defoliated when the oldest flower bud was 2, 4, or 7 cm long. Plants were then placed in growth chambers in darkness or in the light (250 μmol·m -2·s-1 PPF, 10 hours) with 25C air, along with intact plants as controls; all were harvested at the completion of flowering. Defoliation at the 2- and 4-cm bud stages resulted in complete flower abortion, with or without light. Plants defoliated at the 7-cm stage and kept in light had 60% of the flower buds develop to anthesis but depleted more scale reserves. Those defoliated at the 7-cm stage and kept in darkness had complete flower abortion; however, bulb weights remained similar to those of the intact plants kept in the light.


2000 ◽  
Vol 125 (2) ◽  
pp. 248-253 ◽  
Author(s):  
Anil P. Ranwala ◽  
William B. Miller ◽  
Terri I. Kirk ◽  
P. Allen Hammer

The interactions of ancymidol drenches, postgreenhouse cold storage, and hormone sprays on postharvest leaf chlorosis and flower longevity of `Nellie White' Easter lilies (Lilium longiflorum Thunb.) were investigated. Ancymidol drenches (0.5 mg/plant twice) during early growth resulted in leaf chlorosis in the greenhouse which intensified further during postharvest. Cold storage (4 °C) of puffy bud stage plants for 2 weeks also accelerated leaf chlorosis. The combination of ancymidol treatment with cold storage resulted in the most severe leaf chlorosis. Promalin (GA4+7 and BA each at 100 mg·L-1) sprays completely prevented postharvest leaf chlorosis, whereas ProGibb (GA3 at 1000 mg·L-1) was ineffective. Cold storage reduced flower longevity and increased bud abortion, however, the degree of bud abortion varied among experiments in different years. Both ProGibb and Promalin sprays increased flower longevity. Compared to positive DIF (difference between day and night temperature) grown plants, forcing under negative DIF (-8 °C) increased the severity of postharvest leaf chlorosis. Leaves were sampled from basal, middle, and upper sections of the stem after 4 and 12 days in a postharvest evaluation room, and analyzed for soluble carbohydrates and N. Total leaf soluble carbohydrates and N concentrations were less in basal and middle sections of negative DIF-grown plants than in positive DIF-grown plants. Leaf chlorosis was associated with depletion of soluble carbohydrates and N in the leaves. Chemical names used: α-cyclopropyl-α-(p-methoxyphenyl)-5-pyrimidinemethanol (ancymidol); gibberellic acid (GA3); gibberellins A4A7 (GA4+7); N-(phenylmethyl)-1H-purine 6-amine (benzyladenine).


Sign in / Sign up

Export Citation Format

Share Document