Molecular Markers Linked to Phytophthora fragariae Resistance Genes in Strawberry

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 500a-500 ◽  
Author(s):  
K.M. Haymes ◽  
S.C. Hokanson ◽  
K. Salazar ◽  
J. Maas

The commercial strawberry (Fragaria × ananassa Duch.) is susceptible to red stele root rot caused by the fungus Phytophthora fragariae Hickman var. fragariae. Characteristics of the disease are the reddened steles and “rat tail” appearance of the roots. Infected plants are dwarfed, exhibit wilting, and eventually die. Red stele resistance in strawberries and virulence of P. fragariae behave according to the gene-for-gene system. Resistance genes and their corresponding avirulence genes have been identified by screening plant roots for infection. The goal of this international research project with CPRO-DLO, The Netherlands, is to develop highly specific molecular markers for various Rpf resistance genes (Rpf1, Rpf2, Rpf3, and Rpf6) that confer resistance against P. fragariae. Bulked Segregant Analysis was used to identify RAPD and AFLP markers putatively linked to P. fragariae resistance genes. The bulked DNAs representing subsets of three F1 populations that segregated monogenically for either resistance or susceptibility to P. fragariae. The map of these Rpf loci was generated using JoinMap®. The RAPD markers linked to the resistance genes are being converted into SCAR markers, while the AFLP markers will be used as probes for the detection of P. fragariae. The application of the molecular markers linked to resistance genes will have direct applicability to strawberry breeding programs. Marker-facilitated selection of these resistance genes would allow an efficient means in the screening and selection of plant material containing these genes and help in the pyramiding for resistance to P. fragariae. Genetic improvement of the strawberry by the ability to pyramid resistance genes will contribute to the productivity of the strawberry industry worldwide.

2016 ◽  
Vol 5 ◽  
pp. 1
Author(s):  
James Kelly ◽  
Lucía Afanado ◽  
Seott Haley ◽  
Phillip Miklas

Plant breeding methods used to pyramid disease resistance genes generally involve crossing, backcrossing and test crosses in order to verify the presence of desirablecombinations of these genes in the resulting progeny. The epistatic interaction between resistance genes combined with limitations of sample size and the work involved in test crossing results in progeny that do not always possess the desirablecombination of genes. The entire procedure could be made more efficient through the use of molecular markers tightly linked to the resistance genes. Selection for the markers in the absence of the pathogen would result in the indirect selection of resistance genes. The expression of the marker is not masked by any epistatic interaction which commonly occurs with resistance genes. Our bean breeding/genetics group at Michigan State University have successfully tagged the Up-2, Ur-3 genes and the gene block B-190 which confer resistance to bean rust. This achievement has been possible through the use of molecular markers known as RAPD' s (Random Amplified Polymorphic DNA) and populations developed through backcrossing. These molecular markers offcr us the opportunity to pyramid rust rcsistance gene s into specific genotypes in the most efficient way. This breeding strategy will ensure the stability of the same resistance genes.


2016 ◽  
Vol 39 (1) ◽  
Author(s):  
M. S. Uma ◽  
Niranjan Hegde ◽  
Shailaja Hittalmani

Bulked segregant analysis was undertaken to tag gene(s) controlling rust resistance using molecular markers in cowpea, to permit rapid selection of superior desirable rust resistant genotypes in the breeding program. For this purpose, the C-152, cultivated variety with high yielding, semi determinate plant type, good protein content and highly rust susceptible was crossed with genotype IC202778, the landrace from Himachal Pradesh, India having determinate, semi spreading and rust resistant characters. The parental genotypes were analyzed with 92 SSR markers for detection of polymorphism and only 13 markers showed polymorphism between the parents. Using each of these 13 SSR primers, we carried out bulked segregate analysis on F<sub>2</sub> plants representing two extremes of rust disease resistance and susceptible trait. Three SSR markers VuUGM02, VuUGM08 and VuUGM19 were found to be associated with rust resistance. This was further confirmed through selective genotyping. The co-segregation data on these molecular markers and rust resistance on F<sub>2</sub> plants were analysed by means of single-marker linear regression approach. Significant regression suggested linkage between VuUGM02 and rust resistance gene.


Genome ◽  
1999 ◽  
Vol 42 (6) ◽  
pp. 1111-1116 ◽  
Author(s):  
Carole Caranta ◽  
Arnaud Thabuis ◽  
Alain Palloix

The Pvr4 resistance gene in pepper confers a complete resistance to the three pathotypes of potato virus Y (PVY) and to pepper mottle virus (PepMoV). In order to use this gene in a marker-assisted selection (MAS) program and to permit the pyramiding of several potyvirus resistance genes in the same cultivar, tightly linked amplified fragment length polymorphism (AFLP) markers were obtained by the bulked segregant analysis method. Eight linked AFLP markers were mapped in an interval from 2.1 ± 0.8 to 13.8 ± 2.9 cM around this locus. The closest codominant AFLP marker was converted into a codominant CAPS (cleaved amplified polymorphic sequence) marker using data from the alignment of the two allele sequences. We have further characterized the relevance of the CAPS marker for MAS programs in different pepper breeding lines.Key words: amplified fragment length polymorphism markers, bulked segregant analysis, Capsicum annuum, marker-assisted selection, potyvirus resistance.


HortScience ◽  
2004 ◽  
Vol 39 (7) ◽  
pp. 1566-1570 ◽  
Author(s):  
A. Belaj ◽  
L. Rallo ◽  
I. Trujillo ◽  
L. Baldoni

Eight and seven clones, respectively selected within the olive cultivars `Arbequina' and `Manzanilla de Sevilla', were studied by means of randomly amplified polymorphic DNA (RAPD) and amplified fragment-length polymorphism (AFLP) markers. Two clones of `Arbequina', C3 and C12, showed polymorphism with respect to the standard cultivar by means of both markers. In fact, about 33.6% RAPD bands and 9.2% AFLP bands were polymorphic for these clones. This high level of polymorphism and the presence of a high percentage of bands absent in `Arbequina' suggest their possible origin as `Arbequina' seedlings. The dendrogram obtained by both molecular markers also supports the hypothesis of a seedling origin of these clones as they clustered separately from the original cultivar and the rest of monomorphic clones at low values of similarity. Also within the `Manzanilla de Sevilla' group, two clones (31 and 44) showed diversity with respect to the standard cultivar; 4.5% RAPD and 6.3% AFLP markers were polymorphic for these genotypes while all the other clones didn't show any difference with the standard `Manzanilla de Sevilla'. RAPD and AFLP markers effectively revealed intracultivar variability due to gametic or multiple mutational events, while the detection of other kind of differences such as eventual single mutations remains uncertain and requires further investigation.


Genome ◽  
2000 ◽  
Vol 43 (3) ◽  
pp. 528-537 ◽  
Author(s):  
G Barcaccia ◽  
E Albertini ◽  
D Rosellini ◽  
S Tavoletti ◽  
F Veronesi

The production of eggs with the sporophytic chromosome number (2n eggs) in diploid alfalfa (Medicago spp.) is mainly associated with the absence of cytokinesis after restitutional meiosis. The formation of 2n eggs through diplosporic apomeiosis has also been documented in a diploid mutant of M. sativa subsp. falcata (L.) Arcang. (2n = 2x = 16), named PG-F9. Molecular tagging of 2n-egg formation appears to be an essential step towards marker-assisted breeding and map-based cloning strategies aimed at investigating and manipulating reproductive mutants of the M. sativa complex. We made controlled crosses between PG-F9 and three wild type plants of M. sativa subsp. coerulea (Less.) Schm. (2n = 2x = 16) and then hand-pollinated the F1 progenies with tetraploid plants of M. sativa subsp. sativa L. (2n = 4x = 32). As a triploid embryo block prevents the formation of 3x progenies in alfalfa because of endosperm imbalance, and owing to the negligible selfing rate, seed set in 2x-4x crosses was used to discriminate the genetic capacity for 2n-egg production. F1 plants that exhibited null or very low seed sets were classified as normal egg producers and plants with high seed sets as 2n-egg producers. A bulked segregant analysis (BSA) with RAPD (random amplified polymorphic DNA), ISSR (inter-simple sequence repeat), and AFLP (amplified fragment length polymorphism) markers was employed to identify a genetic linkage group related to the 2n-egg trait using one of the three F1 progenies. This approach enabled us to detect a paternal ISSR marker of 610 bp, generated by primer (CA)8-GC, located 9.8 cM from a putative gene (termed Tne1, two-n-eggs) that in its recessive form determines 2n eggs and a 30% recombination genomic window surrounding the target locus. Eight additional RAPD and AFLP markers, seven of maternal, and one of paternal origin, significantly co-segregated with the trait under investigation. The minimum number of quantitative trait loci (QTLs) controlling seed set in 2x-4x crosses was estimated by ANOVA and regression analysis. Four maternal and three paternal independent molecular markers significantly affected the trait. A paternal RAPD marker allele, mapped in the same linkage group of Tne1, explained 43% of the variation for seed set in 2x-4x crosses indicating the presence of a major QTL. A map of the PG-F9 chromosome regions carrying the minor genes that determine the expression level of 2n eggs was constructed using selected RAPD and AFLP markers. Two of these genes were linked to previously mapped RFLP loci belonging to groups 1 and 8. Molecular and genetic evidence support the involvement of at least five genes.Key words: Medicago spp., meiotic mutants, molecular markers.


2000 ◽  
Vol 23 (2) ◽  
pp. 399-402 ◽  
Author(s):  
Fábio Gelape Faleiro ◽  
Wender Santos Vinhadelli ◽  
Vilmar Antonio Ragagnin ◽  
Ronan Xavier Corrêa ◽  
Maurilio Alves Moreira ◽  
...  

Rust, caused by the fungus Uromyces appendiculatus, may cause a significant loss to common bean (Phaseolus vulgaris L.) yield. RAPD markers tightly linked to the resistance genes may be used in breeding programs to aid the development of rust-resistant bean cultivars. In this sense, the objective of the present work was to identify RAPD markers linked to a rust resistance gene block present in the cultivar Ouro Negro. Two hundred and fourteen F2 individuals from a cross between the resistant cultivar Ouro Negro and the susceptible cultivar US Pinto 111 were inoculated with a mixture of eight races of U. appendiculatus. The segregation ratio obtained suggested that resistance is monogenic and dominant. Bulked segregant analysis was used in conjunction with the RAPD technique to search for markers linked to rust resistance genes. Two molecular markers flanking the rust resistance gene block were identified, one at 5.8 ± 1.6 cM (OX11(630)) and the other at 7.7 ± 1.7 cM (OF10(1,050)) of the gene. Simulated indirect selection efficiency in the F2 population using the two markers was 100%. The molecular markers identified in this work are currently being used for the selection of disease-resistant plants in the commom bean breeding program of the Federal University of Viçosa.


2000 ◽  
Vol 125 (3) ◽  
pp. 330-339 ◽  
Author(s):  
K.M. Haymes ◽  
W.E. Van de Weg ◽  
P. Arens ◽  
J.L. Maas ◽  
B. Vosman ◽  
...  

Two dominant sequence characterized amplified region (SCAR) markers (linked at 3.0 cM, coupling phase) were constructed for the strawberry (Fragaria ×ananassa Duch.) gene Rpf1. This gene confers resistance to red stele root rot, caused by the soil-born fungus Phytophthora fragariae Hickman var. fragariae. The SCAR markers were developed originally from the sequence of RAPD OPO-16C(438) that is linked in repulsion phase to the Rpf1 allele. This SCAR primer set produced multiple bands in the resistant test progeny and in some of the susceptible progeny; therefore, new SCARs were developed based on the sequence differences among these bands. These new SCARs were linked in coupling phase to the Rpf allele and mapped to the same location as the original RAPD OPO-16C(438). The SCAR markers, as well as some additional RAPD markers known to be linked to Rpf1, were shown to be highly conserved in linkage to the gene based on examination of 133 European and North American Fragaria L. sp. cultivars and breeding selections. These flanking RAPD and SCAR-PCR markers can be used in breeding programs for the selection of red stele (Rpf1) resistance.


Genome ◽  
1999 ◽  
Vol 42 (2) ◽  
pp. 322-329 ◽  
Author(s):  
Lorenz Hartl ◽  
Volker Mohler ◽  
Friedrich J Zeller ◽  
Sai LK Hsam ◽  
Günther Schweizer

A total of 7654 DNA fragments were screened for linkage to wheat powdery mildew resistance gene Pm1c employing fluorescently based AFLP analysis and phenotypic pools from F3 families. F3 and derived F4 families were used for segregation analysis. Pool screening revealed several cosegregating and tightly linked (0.9 cM) AFLP markers for the Pm1c resistance gene. The previously reported RFLP locus Xwhs178 was integrated into the AFLP map in the vicinity of Pm1c. One AFLP marker, 18M2, was determined to be highly specific for the Pm1c gene in diverse genetic backgrounds. As Pm1c allele confers an effective resistance to powdery mildew, the marker 18M2 provides a valuable tool for enhancing marker assisted selection and pyramiding of powdery mildew resistance genes in wheat.Key words: Triticum aestivum, powdery mildew, disease resistance, AFLP, bulked segregant analysis


Genome ◽  
2002 ◽  
Vol 45 (5) ◽  
pp. 787-793 ◽  
Author(s):  
Jeremy T Ouédraogo ◽  
Jean-Baptiste Tignegre ◽  
Michael P Timko ◽  
François J Belzile

Amplified fragment length polymorphism (AFLP) analysis was used in combination with bulked segregant analysis (BSA) to identify molecular markers linked to two cowpea (Vigna unguiculata (L.) Walp.) genes conferring resistance to Striga gesnerioides race 1. After AFLP analysis of an F2 population derived from a cross between the resistant cultivar Gorom and the susceptible cultivar Tvx 3236, seven AFLP markers were identified that are linked to Rsg3, the gene conferring race 1 resistance in 'Gorom'. The distances between these markers and Rsg3 ranged from 9.9 to 2.5 cM, with two markers, E-AGA/M-CTA460 and E-AGA/M-CAG300, flanking Rsg3 at 2.5 and 2.6 cM, respectively. Analysis of a second F2 population derived from the cross between 'Tvx 3236' and the resistant cultivar IT81D-994 identified five AFLP markers linked to the race 1 resistance gene 994-Rsg present in 'IT81D-994'. The two markers showing the tightest linkage to the994-Rsg locus were E-AAG/M-AAC450 and E-AAG/M-AAC150 at 2.1 and 2.0 cM, respectively. Two of the markers linked to 994-Rsg, E-AGA/M-CAG300 and E-AGA/M-CAG450, were also linked to Rsg3. The identification of molecular markers in common between the two sources of race 1 resistance suggests that either Striga resistance genes are clustered in these plants or that these loci are allelic. Mapping of the resistance loci within the cowpea genome revealed that three markers linked to Rsg3 and (or) 994-Rsg are located on linkage group 6.Key words: cowpea, AFLP markers, Striga resistance, bulked segregant analysis.


Sign in / Sign up

Export Citation Format

Share Document