scholarly journals 405 Glycinebetaine Accumulation in Red Beet under Salinity

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 513E-513
Author(s):  
Guntur V. Subbarao ◽  
Raymond M. Wheeler ◽  
L.H. Levine ◽  
Gary W. Stutte

Accumulation of glycinebetaine occurs in Chenopodiaceae members and is thought to assist in osmotic adjustment and protect cytoplasm from sodium toxicity. Red beet has an ability to tolerate high tissue sodium levels, which may result in increased glycinebetaine production. To test this hypothesis, two cultivars of red beet ['Scarlet Supreme' (SS) and `Ruby Queen' (RQ)] were grown under nonsaline (4.75 mM Na) and saline (54.75 mM Na) conditions in a recirculating hydroponic system for 42 days at elevated CO2 (1200 μmol•mol-1) in a growth chamber. Leaf glycinebetaine level, relative water content, and osmotic potential were measured at weekly intervals. Leaf glycinebetaine levels increased with plant age and reached a maximum of 67 μmol•g-1 dw under nonsaline and 101 μmol•g-1 dry weight (dw) under saline conditions at 42 days in SS; in RQ, the glycinebetaine levels reached a maximum of 91 μmol•g-1 dw under nonsaline and 121 μmol•g-1 dw under saline conditions by 26 days. The mean glycinebetaine levels were increased over two-thirds under saline conditions in both the cultivars. RQ accumulated significantly higher (37% more under nonsaline, and 46% more under salinity) glycinebetaine than SS. The turgid leaf osmotic potential of RQ was consistently higher than SS under nonsaline (2.23 MPa in RQ vs. 1.82 MPa in SS) and saline (2.48 MPa in RQ vs. 2.02 MPa in SS) conditions. The results indicate that higher glycinebetaine levels in the leaf could result in better osmotic adjustment, and glycinebetaine accumulation in red beet can vary among cultivars and is strongly affected by external salinity.

1986 ◽  
Vol 13 (5) ◽  
pp. 659 ◽  
Author(s):  
SP Robinson ◽  
GP Jones

Glycinebetaine was determined in leaves and in isolated chloroplasts of spinach (Spinacia oleracea) by nuclear magnetic resonance spectroscopy. Some leakage of glycinebetaine from the chloroplasts occurred during the isolation so the concentration in chloroplasts in vivo could be up to 1.5 times higher than that measured in isolated chloroplasts. It was demonstrated that any contamination of the chloroplast preparations by glycinebetaine originating from other cellular compartments or from broken chloroplasts would have amounted to less than 10% of the measured values. Leaf osmotic potential of salt-stressed plants was -2.09 MPa compared to -0.91 MPa in non-stressed controls. This was accompanied by a sixfold increase in glycinebetaine content in the leaf but the levels of choline and proline were not increased. In chloroplasts isolated from control leaves the calculated glycinebetaine concentration was 26 mM which was 10-fold higher than the concentration in the leaf as a whole but only contributed 7% of the osmotic potential of the chloroplast. Chloroplasts from salt-stressed plants contained up to 300 mM glycinebetaine which was 20 times the concentration in the leaf as a whole. The glycinebetaine concentration in chloroplasts from salt-stressed leaves was equivalent to an osmotic potential of -0.75 MPa and this contributed 36% of the osmotic potential of the chloroplast and 64% of the decrease in osmotic potential induced by salt stress. At least 30-40% of the total leaf glycinebetaine was localized in the chloroplast. The results demonstrate that glycinebetaine accumulates in chloroplasts to provide osmotic adjustment during salt stress and provide support for the hypothesis that glycinebetaine is a compatible cytoplasmic solute which may be preferentially located in the cytoplasm of cells.


1987 ◽  
Vol 14 (6) ◽  
pp. 669 ◽  
Author(s):  
BP Naidu ◽  
GP Jones ◽  
LG Paleg ◽  
A Poljakoff-Mayber

Fifteen species of Melaleuca and two species of Callistemon from the field were examined to determine whether they accumulated nitrogen-containing compatible solutes and, if so, which. In addition to L-proline, N-methyl-L-proline (MP) (isolated for the first time from plants), trans-4-hydroxy-N-methyl- L-proline (MHP), and N, N'-dimethyl-trans-4-hydroxy-L-proline (DHP) were found in various combinations in the 15 Melaleuca species. M. lanceolata seedlings were subjected to water or salinity stress and M. uncinata to water stress under laboratory conditions. In both species significant reductions in leaf water potential (Ψw), osmotic potential (Ψs), turgor potential (Ψp), and relative water content (RWC) were observed in response to water stress. Salinised M. lanceolata plants showed considerable osmotic adjustment and maintained Ψp comparable to that of control plants; salinity, however, decreased RWC. In response to the imposed stresses under laboratory conditions, proline and MHP levels in M. lanceolata, and MHP and DHP levels in M. uncinata, increased. In addition to possible protective or osmotic roles in vivo, these proline analogues may be useful in chemotaxonomic investigations of Melaleuca species.


1980 ◽  
Vol 7 (2) ◽  
pp. 181 ◽  
Author(s):  
MM Jones ◽  
NC Turner

Sunflower plants were grown in large volumes of soil and slowly water-stressed by withholding water. The tissue water relationships of leaves at various stages of stress and of leaves of equivalent well watered controls were studied by the pressure chamber technique. Plants were stressed either when leaf 17 was expanding or when it was fully expanded. When expanding leaves reached a moderate level of stress (predawn leaf water potential of -0.9 MPa), the osmotic potentials at full turgor and zero turgor were lower than the control values by 0.1 MPa and 0.2 MPa, respectively. When fully expanded leaves were stressed to a similar degree (predawn leaf water potential of - 1.1 MPa), the osmotic potentials at full turgor and zero turgor were lower than the control values by 0.2 MPa and 0.3 MPa, respectively. The development of more severe stress in the fully expanded leaves was not accompanied by any further osmotic adjustment. However, when the expanding leaves reached a predawn leaf water potential of -2.3 MPa, the values of leaf osmotic potential at full turgor and zero turgor were lower than the values for the well watered plants by 0.4 MPa and 0.6 MPa, respectively. In expanding leaves prestressed to a predawn leaf water potential of -2.3 MPa, the osmotic potential at full turgor was significantly less than the control values for at least 7 days after rewatering. Stress had no effect on the bulk modulus of elasticity. It is concluded that both expanding and fully expanded sunflower leaves show osmotic adjustment.


1993 ◽  
Vol 73 (2) ◽  
pp. 525-529 ◽  
Author(s):  
Allen G. Good ◽  
James L. Maclagan

The physiological responses of different species of Brassica to induced drought stress were studied by analysing the relationships between relative water content, leaf water potential and leaf osmotic potential during the onset of drought stress. These data indicate that while there was a decrease in leaf osmotic potential with the onset of drought stress, this did not result from a net increase in solutes. Therefore, these genotypes of Brassica do not appear able to osmoregulate under these drought conditions. Key words: Brassica, drought, osmoregulation, water stress


1978 ◽  
Vol 5 (5) ◽  
pp. 597 ◽  
Author(s):  
NC Turner ◽  
JE Begg ◽  
ML Tonnet

The soil and plant water status of irrigated and unirrigated sorghum [Sorghum bicolor (L.) Moench cv. TX610] and sunflower (Helianthus annuus L. cv. Hysun 30) crops were compared on several days from the late vegetative to the early grain-filling stages of development. Additionally, the stems of plants from the irrigated and unirrigated plots of both species were cut near their base; this caused the plants to quickly dry until the stomata closed. The leaf water potential and leaf osmotic potential were measured when the stomatal resistance reached 6 s cm-� to give the water potential for stomatal closure and to provide osmotic potentials at equal turgor. Carbohydrate and potassium levels of leaves were also monitored. The mean daily minimum leaf water potentials in the irrigated sorghum and sunflower did not decrease below - 1 7 MPa and - 2.0 MPa, respectively, but decreased to - 2.1 MPa in the unirrigated sorghum and -2.6 MPa in the unirrigated sunflower. The osmotic potential at stomatal closure in the rapidly dried plants decreased with increasing leaf water deficit in both sunflower and sorghum: in both species the osmotic potential decreased approximately 0.6 MPa for each megapascal decrease in leaf water potential. The results indicate that both sorghum and sunflower adjusted osmotically in response to water deficits and that adjustment occurred at a rate of at least 0.1 MPa per day. The lowering of osmotic potential persisted less than 9 days after the relief of stress in both sunflower and sorghum. The soluble sugar concentration increased linearly in both sunflower and sorghum with osmotic adjustment: the rate of increase of soluble sugars was significantly greater in sunflower than sorghum. No changes in potassium concentration were observed during osmotic adjustment. The water potential at which the stomata closed varied from - 1.5 to -2.6 MPa in sorghum and - 1.7 to -2.7 MPa in sunflower: the water potential that induced stomatal closure decreased as the osmotic potential decreased. Stomatal closure occurred at a mean turgor of -0-5 MPa in both species: systematic error in the measurement of osmotic potential on frozen and thawed leaf tissue is considered the reason for the low turgor potentials at stomatal closure. The adaxial stomatal closed before the abaxial stomata in the sorghum and unirrigated sunflower but, since the leaf water potential initially fell rapidly and then became stable before the adaxial stomata closed, both the adaxial and abaxial stomata closed at the same leaf water potential.


1985 ◽  
Vol 12 (5) ◽  
pp. 481 ◽  
Author(s):  
E.Y Sambo ◽  
M.J Aston

The temperate pasture grass Phalaris tuberosa L. (cvv. Australian and Sirosa) was grown in soil under glasshouse conditions. When water was withheld, leaf xylem potential (�) decreased at the rate of 0.02 and 0.05 MPa per day in cvv. Australian and Sirosa, respectively, between 7 and 17 days, and reached a dawn value -0.25 (� 0.02) MPa and -0.56 (�0.08) MPa in the respective cultivars. These plants were moderately stressed. Between 17 and 23 days, when the experiment was terminated, stress developed more rapidly and � at dawn reached final values of -2.1 (�0.09) and -2.2 (�0.08) MPa in Australian and Sirosa phalaris, respectively. These plants were severely stressed. The leaf osmotic potential (��) decreased at similar rates as � in the stressed plants, thus maintaining the turgor potential (�*p) relatively constant with increasing water stress. Osmotic adjustment (��100/�) was judged by comparing �� at full turgor (�100/�) in stressed plants which had been rewetted, with �100/� of control unstressed plants. ��100/� of moderately stressed plants was 0.46 and 0.48 MPa in Australian and Sirosa phalaris, respectively. In severely stressed plants, the respective ��100/� values were 0.67 and 0.85 MPa.


2009 ◽  
Vol 89 (5) ◽  
pp. 823-835 ◽  
Author(s):  
H W Cutforth ◽  
S V Angadi ◽  
B G McConkey ◽  
M H Entz ◽  
D Ulrich ◽  
...  

Understanding the drought physiology of alternate crops is essential to assess the production risks of new cropping systems. We compared the water relations of dry (field) pea (Pisum sativum L.), chickpea (Cicer arietinum L.), canola (Brassica napus L.) and mustard (Brassica juncea L.) with spring wheat (Triticum aestivum L.) under different moisture availabilities in field trials conducted in 1997 and 1998 at Swift Current, SK. Stress experience and stress responses varied with crop type. In general, there were similarities in drought physiology between the two pulse crops and between the two oilseed crops. The mean predawn leaf water potential of pea was frequently lowest, while the mean midday leaf water potential of wheat was at least -0.40 MPa lower than for any other crop. The crops exhibited different strategies to overcome water stress. Wheat had the lowest osmotic potential at full turgor, except under drought when turgor was lowest for chickpea and wheat; the highest values were observed in Brassica spp. Mean midday pressure potentials were lowest in wheat (and mostly negative, indicating loss of turgor) and highest for the pulse crops. Mean midday pressure potential for canola was positive when well-watered, otherwise it was near 0. Despite lowering osmotic potential, wheat could not maintain positive turgor much of the time at midday. Pulse crops, with the contributions from both osmotic adjustment and cell elasticity, maintained positive turgor over a wider range of water potentials compared with the other crops. With regard to both osmotic adjustment and tissue elasticity, we ranked the crops from high to low ability to adjust to moderate to severe water stress as pulses > wheat > Brassica oilseeds. Key words: Leaf water, osmotic, turgor potentials, wheat, pulse, canola, semiarid prairie


1992 ◽  
Vol 117 (5) ◽  
pp. 816-823 ◽  
Author(s):  
Zhongchun Wang ◽  
Gary W. Stutte

Greenhouse grown 2-year-old potted `Jonathan' apple trees (Malus domestica Borkh.) were subjected to various levels of water stress in February. Midday leaf water potential (ψW), leaf osmotic potential (ψS), soluble sugars, and starch contents of mature leaves were measured throughout the development of water stress to determine whether active osmotic adjustment could be detected and whether carbohydrates were involved. Active adjustments of 0.6 MPa were observed 3 and 5 days, respectively, after water stress was initiated. Leaf turgor potential (ψP) could not be maintained through the osmotic adjustment when ψW dropped below -1.6 MPa. Sorbitol, glucose, and fructose concentrations increased while sucrose and starch levels decreased significantly as water stress developed, strongly suggesting that sugar alcohol and monosaccharide are the most important osmotica for adjustment. Sorbitol was a primary carbohydrate in the cell sap and accounted for > 50% of total osmotic adjustment. The partitioning of newly fixed W-labeled photosynthates in mature leaves was not affected by water stress immediately after the 30-min 14CO2 treatment. All the W-labeled carbohydrates decreased in the labeled leaves very rapidly after 14CO2 labeling. The decrease in 14C-sorbitol was greater than the decrease in other carbohydrates under both well-watered and stressed conditions. After 24 hours of water stress, however, the percentage of 14C-sorbitol increased while the percentages of sucrose, starch, glucose, and fructose decreased significantly with increasing levels of stress. The ratio of 14C-sorbitol in leaves with ψW = -3.5 MPa to leaves with ψW = -0.5 MPa was significantly higher than that of 14C-sucrose, 14C-glucose, W-fructose, or 14C-starch.


1986 ◽  
Vol 13 (5) ◽  
pp. 597 ◽  
Author(s):  
BA Myers ◽  
TF Neales

Osmotic adjustment was observed in pot-grown seedlings of Eucalyptus behriana, E. microcarpa and E. polyanthemos that had been subjected to one and two periods of drought. The osmotic potential of sap expressed from rehydrated leaves was significantly lower in seedlings which had wilted twice (-2.02 � 0.05 MPa) compared with those which had wilted once (-1.86 � 0.05 MPa) and those which had been watered daily (-1.66 � 0.05 MPa). After two drought cycles, seedlings began to wilt at lower mean values of plant water potential (- 3.51 � 0.22 MPa) than those which had not wilted previously (-3.14 � 0.22 MPa). Thus drought-induced osmotic adjustment apparently enhanced turgor maintenance. The ratio of turgid weight to dry weight was slightly, but significantly, smaller in the seedlings subjected to two drought cycles (3.83 � 0.04 MPa) compared with those subjected to one drought cycle (4.05 � 0.04). The osmotic adjustment that was induced by two drought cycles in these seedlings was about one third of the observed seasonal osmotic adjustment in mature trees of E. behriana and E. microcarpa in the field.


Sign in / Sign up

Export Citation Format

Share Document