Osmotic Adjustment of Sorghum and Sunflower Crops in Response to Water Deficits and Its Influence on the Water Potential at Which Stomata Close

1978 ◽  
Vol 5 (5) ◽  
pp. 597 ◽  
Author(s):  
NC Turner ◽  
JE Begg ◽  
ML Tonnet

The soil and plant water status of irrigated and unirrigated sorghum [Sorghum bicolor (L.) Moench cv. TX610] and sunflower (Helianthus annuus L. cv. Hysun 30) crops were compared on several days from the late vegetative to the early grain-filling stages of development. Additionally, the stems of plants from the irrigated and unirrigated plots of both species were cut near their base; this caused the plants to quickly dry until the stomata closed. The leaf water potential and leaf osmotic potential were measured when the stomatal resistance reached 6 s cm-� to give the water potential for stomatal closure and to provide osmotic potentials at equal turgor. Carbohydrate and potassium levels of leaves were also monitored. The mean daily minimum leaf water potentials in the irrigated sorghum and sunflower did not decrease below - 1 7 MPa and - 2.0 MPa, respectively, but decreased to - 2.1 MPa in the unirrigated sorghum and -2.6 MPa in the unirrigated sunflower. The osmotic potential at stomatal closure in the rapidly dried plants decreased with increasing leaf water deficit in both sunflower and sorghum: in both species the osmotic potential decreased approximately 0.6 MPa for each megapascal decrease in leaf water potential. The results indicate that both sorghum and sunflower adjusted osmotically in response to water deficits and that adjustment occurred at a rate of at least 0.1 MPa per day. The lowering of osmotic potential persisted less than 9 days after the relief of stress in both sunflower and sorghum. The soluble sugar concentration increased linearly in both sunflower and sorghum with osmotic adjustment: the rate of increase of soluble sugars was significantly greater in sunflower than sorghum. No changes in potassium concentration were observed during osmotic adjustment. The water potential at which the stomata closed varied from - 1.5 to -2.6 MPa in sorghum and - 1.7 to -2.7 MPa in sunflower: the water potential that induced stomatal closure decreased as the osmotic potential decreased. Stomatal closure occurred at a mean turgor of -0-5 MPa in both species: systematic error in the measurement of osmotic potential on frozen and thawed leaf tissue is considered the reason for the low turgor potentials at stomatal closure. The adaxial stomatal closed before the abaxial stomata in the sorghum and unirrigated sunflower but, since the leaf water potential initially fell rapidly and then became stable before the adaxial stomata closed, both the adaxial and abaxial stomata closed at the same leaf water potential.

1980 ◽  
Vol 7 (2) ◽  
pp. 181 ◽  
Author(s):  
MM Jones ◽  
NC Turner

Sunflower plants were grown in large volumes of soil and slowly water-stressed by withholding water. The tissue water relationships of leaves at various stages of stress and of leaves of equivalent well watered controls were studied by the pressure chamber technique. Plants were stressed either when leaf 17 was expanding or when it was fully expanded. When expanding leaves reached a moderate level of stress (predawn leaf water potential of -0.9 MPa), the osmotic potentials at full turgor and zero turgor were lower than the control values by 0.1 MPa and 0.2 MPa, respectively. When fully expanded leaves were stressed to a similar degree (predawn leaf water potential of - 1.1 MPa), the osmotic potentials at full turgor and zero turgor were lower than the control values by 0.2 MPa and 0.3 MPa, respectively. The development of more severe stress in the fully expanded leaves was not accompanied by any further osmotic adjustment. However, when the expanding leaves reached a predawn leaf water potential of -2.3 MPa, the values of leaf osmotic potential at full turgor and zero turgor were lower than the values for the well watered plants by 0.4 MPa and 0.6 MPa, respectively. In expanding leaves prestressed to a predawn leaf water potential of -2.3 MPa, the osmotic potential at full turgor was significantly less than the control values for at least 7 days after rewatering. Stress had no effect on the bulk modulus of elasticity. It is concluded that both expanding and fully expanded sunflower leaves show osmotic adjustment.


1985 ◽  
Vol 63 (4) ◽  
pp. 704-710 ◽  
Author(s):  
L. M. Dwyer ◽  
D. W. Stewart

Leaf water potential, osmotic potential, and leaf conductance were measured on corn (Zea mays L.) under water stress in the field and the greenhouse. Field-grown plants were subjected to several cycles of moderate water stress during vegetative growth, while greenhouse plants were well watered until just before the measurement period began following tasselling. In both the field and the greenhouse, leaf water potential declined at midday. Comparison of leaf water potential and osmotic potential measurements indicated that in both environments, the midday decline in leaf water potential was accompanied by a decline in osmotic potential. Since the decline in osmotic potential was greater than that accounted for by predicted volume changes resulting from normal daily dehydration, it was assumed to indicate osmotic adjustment. Despite these similarities, field-grown plants showed a greater response to water stress. Field plants underwent larger daily changes in leaf water potential and these were accompanied by larger changes in osmotic potential. As a result of this greater osmotic adjustment in the field, conductivity was higher at equivalent leaf water potentials and the critical leaf water potential was lower than in greenhouse-grown plants. In both environments, osmotic adjustment maintained leaf turgor (or pressure potential) in a narrow positive range. Although there was no direct relation between turgor potential and leaf conductivity, we hypothesize that the maintenance of a positive turgor potential during daylight hours is significant for growth since it may allow the moisture- and temperature-sensitive process of leaf expansion to proceed during the warmer daylight hours, even under moderate water stress.


2017 ◽  
Vol 44 (11) ◽  
pp. 1134 ◽  
Author(s):  
Rachael H. Nolan ◽  
Kendal A. Fairweather ◽  
Tonantzin Tarin ◽  
Nadia S. Santini ◽  
James Cleverly ◽  
...  

Partitioning of water resources amongst plant species within a single climate envelope is possible if the species differ in key hydraulic traits. We examined 11 bivariate trait relationships across nine woody species found in the Ti-Tree basin of central Australia. We found that species with limited access to soil moisture, evidenced by low pre-dawn leaf water potential, displayed anisohydric behaviour (e.g. large seasonal fluctuations in minimum leaf water potential), had greater sapwood density and lower osmotic potential at full turgor. Osmotic potential at full turgor was positively correlated with the leaf water potential at turgor loss, which was, in turn, positively correlated with the water potential at incipient stomatal closure. We also observed divergent behaviour in two species of Mulga, a complex of closely related Acacia species which range from tall shrubs to low trees and dominate large areas of arid and semiarid Australia. These Mulga species had much lower minimum leaf water potentials and lower specific leaf area compared with the other seven species. Finally, one species, Hakea macrocarpa A.Cunn ex.R.Br., had traits that may allow it to tolerate seasonal dryness (through possession of small specific leaf area and cavitation resistant xylem) despite exhibiting cellular water relations that were similar to groundwater-dependent species. We conclude that traits related to water transport and leaf water status differ across species that experience differences in soil water availability and that this enables a diversity of species to exist in this low rainfall environment.


1991 ◽  
Vol 42 (5) ◽  
pp. 747 ◽  
Author(s):  
T Tangpremsri ◽  
S Fukai ◽  
KS Fischer ◽  
RG Henzell

Development of genotypic variation in osmotic adjustment was examined in two glasshouse experiments using two sets of sorghum material. In the first experiment, 47 S2 lines extracted from a randomly mated population were used, whereas in the other, inbred parents and their 15 hybrids were compared. In both experiments, water deficit was induced in two periods, one before anthesis and the other after anthesis for most genotypes. In both experiments osmotic potential at the beginning of the first drying period was similar among genotypes and therefore osmotic potential obtained under water deficit was used for the comparison of osmotic adjustment among genotypes. In the first drying period of both experiments, when stress was milder, about 40% of the variation in osmotic adjustment was accounted for by difference in leaf water potential. When the effect of water potential was removed by covariance analysis, there was significant genotypic variation in osmotic adjustment in the second experiment, but not in the first experiment. On the other hand, in the second drying period, when stress was more severe, the effect of leaf water potential on osmotic adjustment was small. There was significant genotypic variation in osmotic adjustment in both experiments after the water potential effect was removed by covariance analysis. Osmotic adjustment in the second drying period was also negatively correlated with grain sink/source ratio (number of grains/leaf area) in the first set of materials. The comparison of osmotic adjustment among hybrids and their parents showed that, in this particular set of genotypes, the female parents were more important than the male in determining osmotic adjustment of the hybrids. The genotypic variation was associated with performance under water deficit in the field. It is concluded that there is considerable genotypic variation in osmotic adjustment in the genetic material examined. Osmotic adjustment is, however, correlated with water potential and grain sink/source balance, and hence the selection for osmotic adjustment needs to ensure that high value is not due simply to low water potential or small head size.


2009 ◽  
Vol 89 (5) ◽  
pp. 823-835 ◽  
Author(s):  
H W Cutforth ◽  
S V Angadi ◽  
B G McConkey ◽  
M H Entz ◽  
D Ulrich ◽  
...  

Understanding the drought physiology of alternate crops is essential to assess the production risks of new cropping systems. We compared the water relations of dry (field) pea (Pisum sativum L.), chickpea (Cicer arietinum L.), canola (Brassica napus L.) and mustard (Brassica juncea L.) with spring wheat (Triticum aestivum L.) under different moisture availabilities in field trials conducted in 1997 and 1998 at Swift Current, SK. Stress experience and stress responses varied with crop type. In general, there were similarities in drought physiology between the two pulse crops and between the two oilseed crops. The mean predawn leaf water potential of pea was frequently lowest, while the mean midday leaf water potential of wheat was at least -0.40 MPa lower than for any other crop. The crops exhibited different strategies to overcome water stress. Wheat had the lowest osmotic potential at full turgor, except under drought when turgor was lowest for chickpea and wheat; the highest values were observed in Brassica spp. Mean midday pressure potentials were lowest in wheat (and mostly negative, indicating loss of turgor) and highest for the pulse crops. Mean midday pressure potential for canola was positive when well-watered, otherwise it was near 0. Despite lowering osmotic potential, wheat could not maintain positive turgor much of the time at midday. Pulse crops, with the contributions from both osmotic adjustment and cell elasticity, maintained positive turgor over a wider range of water potentials compared with the other crops. With regard to both osmotic adjustment and tissue elasticity, we ranked the crops from high to low ability to adjust to moderate to severe water stress as pulses > wheat > Brassica oilseeds. Key words: Leaf water, osmotic, turgor potentials, wheat, pulse, canola, semiarid prairie


1974 ◽  
Vol 54 (4) ◽  
pp. 765-770 ◽  
Author(s):  
P. A. DUBÉ ◽  
K. R. STEVENSON ◽  
G. W. THURTELL

Relationships between (1) photosynthesis (2) transpiration (3) total diffusive resistance to water vapor and (4) mesophyll resistance and leaf water potential were examined in two lines of corn (Zea mays L.) differing in phenotypic response to water stress. One line (Q-188) was a wilting inbred and the other (DR-1) was an inbred known to have at least some heat and drought resistance under field conditions. No differences were found between inbred lines in net photosynthetic rate, transpiration rate and total diffusive resistance to water vapor at high or low leaf water potentials in the light. In both lines, stomatal closure began to occur between − 8.5 to − 9.5 bars. Similarly, rapid increases in both total resistance to water vapor diffusion and mesophyll resistance to carbon dioxide diffusion occurred within a narrow range of water potentials. However, leaf water potential, and thus all other parameters, differed markedly between lines when considered on a time scale. The early wilting of Q-188 suggested that high resistances to water flow were present in the xylem system.


1987 ◽  
Vol 109 (3) ◽  
pp. 437-444 ◽  
Author(s):  
Kay F. Brown ◽  
M. McGowan ◽  
M. J. Armstrong

SummaryFor many field-grown crops, including sugar beet, there is little information on the seasonal changes in leaf water potential and its components as the soil dries. Therefore, seasonal changes in leaf water, osmotic and turgor potentials of sugar beet were measured in two seasons, in crops that experienced differing degrees of soil moisture stress. In 1983 potentials of crops exposed to early and late droughts were compared with those of irrigated crops, and in 1984 measurements were made in a non-irrigated crop. In the irrigated crop the midday leaf water potential changed little during the season, except in response to fluctuating evaporative demand. In the drought and non-irrigated treatments there was a sharp fall in leaf water potential as soon as the soil water potential decreased. The size of the midday leaf water potential was primarily determined by soil dryness. However, the leaf water potential did not decrease below about — 1·5 MPa in either year. The leaf osmotic potential declined at the same time as the leaf water potential, but the extent to which this happened differed in the two years. Only in the 1984 non-irrigated crop did the osmotic potential continue to decrease as the soil dried, suggesting that osmotic adjustment had taken place in 1984 but not in 1983. Thus higher turgor was maintained in the 1984 crop than in the 1983 drought-affected crops. Some turgors were recorded as apparently negative in 1983.Since the leaf water potential declined to a minimum of about — 1·5 MPa, the soil water potential minima were also about — 1·5 MPa. However, deeper soil was not dried to this extent, suggesting that the extra resistance for water uptake from deep soil was limiting or the rooting density was too low.The pattern of recovery of leaf water potential overnight suggested that the rhizosphere resistance to water movement was small, even as the soil dried. However, measurement of stem water potentials in 1984 indicated that a significant resistance to water flow existed within the aerial part of sugar beet plants. This shows that the use of the water potential in leaves as an estimate of that in stems or roots can be misleading.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1143f-1143
Author(s):  
Thomas G. Ranney ◽  
R.E. Bir ◽  
W.A. Skroch

In order to evaluate and compare adaptability to dry sites, plant water relations and leaf gas exchange were compared in response to water stress among six birch species: monarch birch (Betula maximowicziana), river birch (B. nigra), paper birch (B. papyrifera), European birch (B. pendula), `Whitespire' Japanese birch (B. platyphylla var. japonica `Whitespire'), and gray birch (B. pendula). After 28 days without irrigation, Japanese birch maintained significantly higher stomatal conductance (gs) and net photosynthesis (Pn) than did any of the other species, despite having one of the lowest mid-day water potentials. Evaluation of tissue water relations, using pressure-volume methodology, showed no evidence of osmotic adjustment for any of these species in response to water stress. However, there was substantial variation among species in the water potential at the turgor loss point; varying from a high of -1.34 MPa for river birch to a low of -1.78 MPa for Japanese birch. Rates of Pn and gs under mild stress (mean predawn leaf water potential of -0.61 MPa) were negatively correlated with leaf osmotic potential at full turgor and the leaf water potential at the turgor loss point.


1983 ◽  
Vol 61 (1) ◽  
pp. 373-376 ◽  
Author(s):  
Jairo A. Palta

The effects of short periods of water shortage on the CO2 and water vapour exchange of attached cassava (Manihot esculenta Crantz 'M Col 72') leaves were measured. Gas-exchange and leaf water potential measurements were made in outdoor grown plants previously subjected to varying periods without water. Leaf water potentials fell to between −0.61 and −1.06 MPa and net photosynthesis and transpiration rates declined as leaf water potential decreased. Estimations of the leaf internal CO2 conductance indicated that the linear relationship established between leaf water potential and net photosynthesis is dominated by, but not completely explained by, stomatal closure.


Sign in / Sign up

Export Citation Format

Share Document