scholarly journals 662 Genetics and Physiology of Postharvest Cut Flower Longevity

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 562B-562
Author(s):  
Dennis P. Stimart ◽  
Kenneth R. Schroeder

Efforts to improve postharvest longevity of fresh-cut flowers has only recently turned toward selection and breeding. Conventional methods to extend keeping longevity of cut flowers depend on use of chemical treatment placed in holding solutions. Postharvest longevity studies were initiated with Antirrhinum majus L. (snapdragon) to determine: if natural genetic variation existed for cut-flower longevity, the inheritance of the trait, heritability, and associated physiology. Evaluation of commercial inbreds held in deionized water revealed a range in cut-flower longevity from a couple of days to 2.5 weeks. The shortest- and longestlived inbreds were used as parents in crosses to study the aforementioned areas of interest. Information will be presented on inheritance of cut flower longevity based on populations evaluated from matings for generation means analysis and inbred backcross method. Also presented will be information on stomata, transpiration, carbohydrate, fresh-weight change, and forcing temperature relative to postharvest longevity.

2001 ◽  
Vol 126 (2) ◽  
pp. 200-204 ◽  
Author(s):  
Kenneth R. Schroeder ◽  
Dennis P. Stimart

Genetics of Antirrhinum majus L. (snapdragon) cut flower postharvest longevity (PHL) was investigated by generation means analysis using a white short-lived inbred (WS) and white long-lived inbred (WL) to determine mode of inheritance and heritability. Broad and narrow sense PHL heritability was estimated at 78% and 30%, respectively. Scaling tests for adequacy of an additive-dominance model in explaining PHL inheritance suggested absence of epistasis. However, joint scaling indicated digenic or higher order epistatic interactions. Fitting of a digenic epistatic model revealed significant additive effects and nonsignificant dominance and epistatic interactions. Additionally, based on sequential model fittings all six parameters [mean, additive (a), dominance (d), a×a, d×d, and a×d] proved necessary to explain observed PHL variation. Continuous variation for PHL observed in the F2 and backcross generations suggests PHL is quantitative. Assessment of associated traits revealed a positive relationship between number of flowers opening postharvest on a cut flower and PHL. In addition, floret wilting led to short PHL while floret browning was associated with long PHL.


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 503E-503
Author(s):  
Andrew J. Macnish ◽  
Ria T. Leonard ◽  
Terril A. Nell

The postharvest longevity of fresh-cut flowers is often limited by the accumulation of bacteria in vase water and flower stems. Aqueous chlorine dioxide is a strong biocide with potential application for sanitizing cut flower solutions. We evaluated the potential of chlorine dioxide to prevent the build-up of bacteria in vase water and extend the longevity of cut Matthiola incana `Ruby Red', Gypsophila paniculata `Crystal' and Gerbera jamesonii `Monarch' flowers. Fresh-cut flower stems were placed into sterile vases containing deionized water and either 0.0 or 2 μL·L–1 chlorine dioxide. Flower vase life was then judged at 21 ± 0.5 °C and 40% to 60% relative humidity. Inclusion of 2 μL·L–1 chlorine dioxide in vase water extended the longevity of Matthiola, Gypsophila and Gerbera flowers by 2.2, 3.5, and 3.4 days, respectively, relative to control flowers (i.e., 0 μL·L–1). Treatment with 2 μL·L–1 chlorine dioxide reduced the build-up of aerobic bacteria in vase water for 6 to 9 days of vase life. For example, addition of 2 μL·L–1 chlorine dioxide to Gerbera vase water reduced the number of bacteria that grew by 2.4- to 2.8-fold, as compared to control flower water. These results confirm the practical value of chlorine dioxide treatments to reduce the accumulation of bacteria in vase water and extend the display life of cut flowers.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 473b-473
Author(s):  
Kenneth R. Schroeder ◽  
Dennis P. Stimart

Breeding for postharvest longevity of cut flowers has not been done to any great extent in spite of the potential benefits from reduced chemical preservative usage and increased popularity of cuts due to longer vaselife. Some studies have reported broad-sense heritabilities for postharvest longevity of 36% to 46% and narrow-sense heritabilities of 0% to 38%. Postharvest longevity of cut flowers of Antirrhinum majus L. (snapdragon) inbreds range from 2 to 16 d with the F1 hybrids intermediate at 8.1 d when evaluated in deionized water. It would appear postharvest longevity of snapdragon cut flowers should be a selectable trait. In an effort to determine narrow-sense heritability for postharvest longevity of snapdragon cut flowers, a generation means analysis was established using single-seed descent S4 generation inbreds with postharvest longevities of 2 and 15 d. Plants were grown in greenhouses at the Univ. of Wisconsin, Madison, in August and harvested in Nov. 1997 for postharvest evaluation. Experimental design was a randomized complete block with 2 environments and 3 replications. Nonsegregating generations (P1, P2, and F1) consisted of 10 plants per replication, backcrosses 30 plants per replication, and the F2 with 60 plants per replication. Data will be presented on narrow-sense heritability of postharvest longevity of snapdragon cut flowers.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 486d-486
Author(s):  
Kenneth R. Schroeder ◽  
Dennis P. Stimart

Considerable variation exists in Antirrhinum majus L. (snapdragon) for postharvest longevity of cut flowering stems. We have seen a range of 2 to 16 d postharvest life of snapdragon inbreds used in our experiments when evaluated in deionized water. A correlation between longevity of intact flowers and cut flowers has been reported for roses and tulips. In an effort to test this relationship on snapdragons, plants from a short-lived (5 days) and long-lived (16 days) inbred were grown in a greenhouse at the Univ. of Wisconsin, Madison, in Spring 1997. Plants began flowering in Apr.1997. The first three florets on each plant were tagged when fully open and the date of senescence recorded for each individual floret. Results showed a significant difference in longevity of intact florets. Mean floret longevity of the short- and long-lived lines was 13 and 25 days, respectively (LSD0.05 = 1.03 days). This is an indication that selection for postharvest longevity of snapdragons may be done based on intact flower longevity.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 435c-435
Author(s):  
Susan M. Stieve ◽  
Dennis P. Stimart

Selecting for increased postharvest longevity through use of natural variation is being investigated in Antirrhinum majus (snapdragon) in order to decrease postharvest chemical treatments for cut flowers. The postharvest longevity of eighteen white commercial inbreds was evaluated. Twelve stems of each inbred were cut to 40 cm and placed in distilled water. Stems were discarded when 50% of spike florets wilted or browned. Postharvest longevity ranged from 3.0 (Inbred 1) to 16.3 (Inbred 18) days. Crossing Inbred 18 × Inbred 1 yields commercially used Hybrid 1 (6.6 days postharvest). The F2 population averaged 9.1 days postharvest (range 1 to 21 days). F3 plants indicate short life postharvest may be conferred by a recessive gene in this germplasm. Populations for generation means analysis as well as hybrids between short, medium and long-lived inbreds were generated and evaluated for postharvest longevity.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 659d-659
Author(s):  
Gloria McIntosh ◽  
Gerald Klingaman

Several cut flower species were studied to determine their feasibility for cut flower production. Three fertilizer treatments (0.5, .1, and .15kg/m2 respectively) were used and their effect on number of stems, stem length and fresh weight were determined. Celosia cristata and Ageratum houstonianum `Blue Horizon' proved to respond best to fertilizer treatments. Celosia fertilized at a rate of .15kg/m2 will produce approximately 200 stems/m2. Ageratum will produce appoximately 400 stems/m2 when fertilized at a rate of .10kg/m2. Fertlizer rates of .10 and .15 kg/m2 for Eustoma culture yielded 86 stems/m2, which was lower than other species used in this test. Extended vase life and consumer response could possibly justify using this species in cut flower production. An economic break-even analysis will be presented to show what price will have to be received per stem to cover costs.


2017 ◽  
Vol 23 (1) ◽  
pp. 101
Author(s):  
Bruno Trevenzoli Favero ◽  
Giuseppina Pace Pereira Lima ◽  
John Dole

Cut curcuma stem has a reported vase life of 7 to 21 days and this difference in vase life is probably due to a combination of different factors such as growing conditions and postharvest treatments. However, the cut flower industry needs key postharvest information for new species and cultivars to be able to effectively market the flowers. The objectives of this study was to evaluate the effect of commercial hydrator and holding solutions, commercial growth regulator formulation, floral foam, ethylene and silver thiosulfate (STS) on the postharvest handling of C. alismatifolia cultivars. Control treatment (deionized water) had better vase life than the combinations of the commercial hydrator for 4h and commercial holding solution for 44h. Floral foam reduced vase life to 17 days from 23 days for the control treatment. The growth regulators gibberellin plus benzyladenine (GA4+7 + BA) had a positive effect on the fresh weight keeping parameter, but further studies are necessary. STS did not improve vase life, nor did ethylene at 1 µL L-1 reduce it. The curcuma cultivars tested were not positively affected by vase solution composition and had an average vase life in deionized water of 21 days.


HortScience ◽  
2011 ◽  
Vol 46 (3) ◽  
pp. 509-512 ◽  
Author(s):  
Peitao Lü ◽  
Xinmin Huang ◽  
Hongmei Li ◽  
Jiping Liu ◽  
Shenggen He ◽  
...  

In studying the postharvest water relations of cut flowers, researchers aim to determine rates of water uptake and water loss along with changes in fresh weight. An automatic apparatus was devised for continuous monitoring of these indices. The novel apparatus consists of two balances automatically recording mass at a relatively high data acquisition rate (min−1), a personal computer, two containers, and plastic tubing. The apparatus is accurate, labor-saving, and real-time. It enabled dynamic synchronous recording of water uptake as well as fresh weight of the cut flower stem, from which precise water uptake loss rates during vase life can be accurately determined. Rates of water uptake and water loss of individual cut rose (Rosa hybrida cv. Movie Star) stems were measured using the apparatus under alternating 12-h light and dark periods. Both water uptake and water loss rates fluctuated with the light to dark shift over 120 h of observation. Stem fresh weight increased rapidly over the first 40 h of vase period and decreased gradually thereafter. Cut lily (Lilium hybrida cv. Yellow Overlord) stems showed similar trends in water uptake and water loss rate to cut rose stems. The accuracy and sensitivity of the new apparatus was validated by comparison with manual weighing using a balance at 2-h intervals under alternating 12-h light and dark periods over 108 h. The apparatus described here constitutes a suitable method for direct measurement of water uptake and fresh weight, including capturing relatively rapid water balance responses to changes in the postharvest environment.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1704
Author(s):  
Sabir Aziz ◽  
Adnan Younis ◽  
Muhammad Jafar Jaskani ◽  
Rashid Ahmad

The short vase life is the major problem in the cut flower industry. This study was conducted to evaluate the role of different vase solutions and oils in enhancing the quality and vase life of lily cut flowers. Salicylic acid (SA; 300 mg L−1), citric acid (CA; 300 mg L−1), gibberellic acid (GA; 100 mg L−1), and clove oil (200 mg L−1) were used as vase solutions. These treatments were applied after pulsing with preoptimized sucrose 5%. It was found that SA (300 mg L−1) + sucrose (5%) improved the performance of cut flowers, which further increased the longevity of all tested lily cultivars up to eight days and the longest vase life by 17.6 days. The maximum change in fresh weight (5.60 g), increase in chlorophyll contents (3.2 SPAD value), highest protein content (6.1 mg g−1 FW), and increase in the activities of superoxide dismutase (SOD) (51.0 U g−1 protein), catalase (CAT) (36.3 U g−1 protein), and peroxidase (POD) (41.6 U g−1 protein), were recorded with the CA (300 mg L−1) + sucrose 5%. Among the cultivars, “Zambesi” performed best compared to “Sorbonne” and “Caesars”. The maximum anthocyanin contents (198%) were recorded in “Caesars”. In conclusion, among the different preservative solutions, SA performed best to prolong the vase life and quality of lily cut flowers.


2009 ◽  
Vol 57 (2) ◽  
pp. 165-174
Author(s):  
F. Hassan

This investigation was carried out to study the effect of 100, 200 and 300 ppm 8-hydroxyquinoline sulphate (8-HQS) and 5 and 10% sucrose treatments on the vase life and post-harvest quality of cut flowers of Strelitzia reginae Ait. and Hippeastrum vittatum Herb. cv. Apple Blossome. All possible combinations of 8-HQS and sucrose were tested. The treatments were applied as holding solutions, and control flowers were held in distilled water till the end of the experiment. All the treatments significantly increased the vase life and number of open florets of Strelitzia reginae cut flowers compared to the control. Applying 8-HQS and sucrose treatments in both seasons improved the vase life and floret longevity of Hippeastrum vittatum cut flowers. In addition, the percentage of fresh weight gain from the initial weight and the carbohydrate content were also enhanced in both cut flower crops. In order to obtain the highest post-harvest quality of Strelitzia reginae Ait. and Hippeastrum vittatum Herb. cv. Apple Blossome cut flowers, treatment with 200 ppm 8-HQS + 10% sucrose was recommended.


Sign in / Sign up

Export Citation Format

Share Document